CAPSICUM NEWSLETTER
Dir. resp. Luciana Quagliotti
Registrazione n. 4119 del 25/11/1989
Presso il Tribunale di Torino
EDITORS

P. Belletti, M. O. Nassi, L. Quagliotti

Institute of Plant Breeding and Seed Production
Via P. Giuria, 15 - 10126 Turin - Italy

SCIENTIFIC COMMITTEE

- A. Andrasfalvy, Hungary
- E. Pochard, France
- C. Shifriss, Israel
- R. Gil Ortega, Spain
- L. Quagliotti, Italy

SUBSCRIPTION

Annual subscription rate: 20 U.S.D. or 100 U.S.D. (supporters) including carriage charges. Subscription to be sent to EUCARPIA Secretariat (P.O.Box 128, 67100 Wageningen, The Netherlands) and payed into the Netherland Bank, current account A.B.N./539128090, specifying the name and the cause of the payment.

SEPTEMBER 1990

The picture in the cover is derived from the
"Herbario nuovo di Castore Durante", Venetia, 0, MDCXXXVI

Printed in Italy

I
**CONTENTS**

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td>3</td>
</tr>
<tr>
<td>Contents</td>
<td>5</td>
</tr>
<tr>
<td>List of the authors</td>
<td>7</td>
</tr>
<tr>
<td>List of the contributions</td>
<td>9</td>
</tr>
<tr>
<td>Contributions</td>
<td>13</td>
</tr>
<tr>
<td>Announcements</td>
<td>71</td>
</tr>
<tr>
<td>Literature review</td>
<td>73</td>
</tr>
<tr>
<td>Analytical index</td>
<td>83</td>
</tr>
<tr>
<td>Mailing list</td>
<td>85</td>
</tr>
</tbody>
</table>
FOREWORD

The present issue of "Capsicum Newsletter" shows itself as a 'double number'. So we have been able to recover the delay accumulated in the past years. Beginning from the next issue (the 10th, forecast publication by the summer 1991), we hope to be more punctual and to be able to publish the Newsletter within the forecast time.

In this issue, the invited paper deals with haploidy and pepper breeding. It has been kindly written by R. Dumas de Vaulx and we are sure that all the readers will find it very interesting. We remind that any suggestion on subjects and/or authors to be considered for the next issue of "Capsicum Newsletter" will be appreciated.

The survey of 'literature review' is again present in this issue. We hope it will be useful and we impress on the recipients' mind to send us a copy of their articles, mainly those published on journals of limited diffusion.

We have been asked to include in the Newsletter the tomato and to exclude the eggplant. Due to affinity with the EUCARPIA Group to which we refer, we are sorry not to be able to take into account this suggestion. In the meantime we cannot reduce the size of the journal, as we publish the papers as the authors send us them.

We remind that a service of subscription to the Newsletter has been activated. The subscription rates are not changed: 20 U.S.D. for normal subscribers and 100 U.S.D. for supporters. The fee has to be sent directly to EUCARPIA Secretariat. Please, do not send us any cheque, for we are not allowed to run any financial activity by Italian law.
Although several contributions have not been accepted, we have not modified any of the published papers. Therefore the authors only are responsible for both the scientific content and the form of the reports.

Again we have to complain about the short observance of the instructions to the authors we give in the sample sheet. Please, cooperate with us following very carefully these instructions. Otherwise we will not accept the contributions and they will be sent back to the authors.

Thank you for your cooperation.

Piero Belletti, Maria Ornella Nassi, Luciana Quagliotti

Turin, 30th September 1990
<table>
<thead>
<tr>
<th>Authors</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ahmad M.N.</td>
<td>24, 59</td>
</tr>
<tr>
<td>Akhtar A.S.</td>
<td>59</td>
</tr>
<tr>
<td>Andrzejewska E.</td>
<td>38</td>
</tr>
<tr>
<td>Andrzejewski R.P.</td>
<td>38</td>
</tr>
<tr>
<td>Bapa Rao N.</td>
<td>43</td>
</tr>
<tr>
<td>Barriuso Vargas J.</td>
<td>60</td>
</tr>
<tr>
<td>Belletti P.</td>
<td>64</td>
</tr>
<tr>
<td>Christopher T.</td>
<td>44, 45</td>
</tr>
<tr>
<td>Cohen S.</td>
<td>52</td>
</tr>
<tr>
<td>Coffman W.R.</td>
<td>54</td>
</tr>
<tr>
<td>Csillery G.</td>
<td>25, 49, 51</td>
</tr>
<tr>
<td>Daub6ze AM.</td>
<td>47</td>
</tr>
<tr>
<td>Depestre T.</td>
<td>63</td>
</tr>
<tr>
<td>Dumas de Vaulx R.</td>
<td>13</td>
</tr>
<tr>
<td>Gangopadhyay S.</td>
<td>70</td>
</tr>
<tr>
<td>Gil Ortega R.</td>
<td>56, 60</td>
</tr>
<tr>
<td>G6mez 0</td>
<td>63</td>
</tr>
<tr>
<td>Green S.K.</td>
<td>18</td>
</tr>
<tr>
<td>Harini I.</td>
<td>58</td>
</tr>
<tr>
<td>Hartman G.L.</td>
<td>18</td>
</tr>
<tr>
<td>Hussain A.</td>
<td>24, 59</td>
</tr>
<tr>
<td>Joshi S.</td>
<td>22, 26</td>
</tr>
<tr>
<td>Kannan Bapu J.R.</td>
<td>66, 68</td>
</tr>
<tr>
<td>Kapoor K.S.</td>
<td>70</td>
</tr>
<tr>
<td>Lakshmi N.</td>
<td>43, 58</td>
</tr>
<tr>
<td>Lanteri S.</td>
<td>64</td>
</tr>
<tr>
<td>Ltifi A.</td>
<td>34</td>
</tr>
<tr>
<td>Mishra R.S.</td>
<td>29, 31, 33</td>
</tr>
<tr>
<td>Mishra S.N.</td>
<td>29, 31, 33</td>
</tr>
<tr>
<td>Nassi M.O.</td>
<td>64</td>
</tr>
<tr>
<td>Odrzykoski I.J.</td>
<td>38</td>
</tr>
<tr>
<td>Palaz6n Espafio C.</td>
<td>56, 60</td>
</tr>
<tr>
<td>Palloix A.</td>
<td>47</td>
</tr>
<tr>
<td>Pochard E.</td>
<td>47</td>
</tr>
<tr>
<td>Poulos J.M.</td>
<td>18, 54</td>
</tr>
<tr>
<td>Prakash N.S.</td>
<td>58</td>
</tr>
<tr>
<td>Prolaram B.</td>
<td>44, 45</td>
</tr>
<tr>
<td>Quagliotti L.</td>
<td>64</td>
</tr>
<tr>
<td>Reifschneider F.J.B.</td>
<td>54</td>
</tr>
<tr>
<td>Rusk6 J</td>
<td>49, 51</td>
</tr>
<tr>
<td>Sabanandam A.</td>
<td>44</td>
</tr>
<tr>
<td>Sahoo S.C.</td>
<td>29, 31, 33</td>
</tr>
</tbody>
</table>
LIST OF THE CONTRIBUTIONS

Dumas de Vaulx R.
Haploidy and pepper breeding: a review
(invited paper) .................................................................13

Poulos J.M., Green S.K., Hartman G.L. and Tsou S.C.S.
International hot pepper trial network (INTHOPE) ...........................18

Valglkova M.
Czechoslovak sweet pepper cultivars .............................................20

Joshi S., Thakur P.C., Verma T.S. and Verma H.C.
Paprika germplasm with contrast qualitative traits
from Katrain (India) ...................................................................22

Hussain A. and Ahmad M.N.
Influence of various transplanting dates on the yield
performance of chillies under Faisalabad conditions .......................24

Todorov J. and Csillery G.
Natural cross-pollination data from Bulgaria ..................................25

Joshi S.
Genetics of six quantitative traits in sweet pepper
(Capsicum annuum L.) ................................................................26

Thakur P.C.
Inheritance in sweet pepper (Capsicum annuum L.) .........................28

Sahoo S.C., Mishra S.N. and Mishra R.S.
Genetic variation in F 2 generation of chilli ......................................29

Sahoo S.C., Mishra S.N. and Mishra R.S.
Transgressive segregation for dry yield in chilli (Capsicum annuum L.)
..........................33

Sahoo S.C., Mishra S.N. and Mishra R.S.
F 2 diallel analysis in chilli (Capsicum annuum L.) .........................33

Van der Beek J.G. and Ltifi A.
Variation in fasciculation in F 4 populations of pepper .....................34
Tewari V.P.
Transgressant lines for capsaicinoids content in oleoresin of hot pepper (Capsicum annuum L.) …………………………………………………………………………………36

Andrzejewski R.P., Odrzykoski I.J. and Andrzejewska E.
Monitoring interspecific hybridization between Capsicum baccatum, C. chacoense and C. annuum with isoenzymes …………………… 38

Subhash K. and Sumalini K.
Organogenesis in Capsicum baccatum ………………………………………………………………………………………………………………………… 40

Sun Z. and Wang M.
Study on shoot-tip meristem culture in Capsicum ……………………………………………………………………………………………………… 42

Bapa Rao N. and Lakshmi N.
'Multiploid sporocytes' condition in red peppers ……………………………………………………………………………………………………… 43

Christopher T., Prolaram B., Sadanandam A. and Subhash K.
Pistillate flower mutant in Capsicum annuum L. ……………………………………………………………………………………………………… 44

Prolaram B., Christopher T. and Subhash K.
Seedless fruit mutant in Capsicum ………………………………………………………………………………………………………………………… 45

Daubaze A.M., Palloix A. and Pochard E.
Resistence of androgenetic autodiploid lines of pepper to Phytophthora capsici and Tobacco Mosaic Virus under high temperature …………………………………………………………………………………………………………………………………………………………………………………… 47

Csillery G. and Rusko J.
The application of the ToMV -Ob strain in the TMV L 4 resistance breeding …………………………………………………………………………………………………………………………………………………………………………………… 49

Rusko J. and Csillery G.
Selection to CMV tolerance in cotyledon phase with CMV Fulton strain …………………51

Shifriss C. and Cohen S.
Test for resistance to Cucumber Mosaic Virus (CMV) in Capsicum annuum L. germplasm ……………………………………………………………………………………………………………………………………………………………………………………………… 52

Poulos J.M., Reifschneider F.J.B. and Coffman W.R.
Evaluation of components of resistance to Xanthomonas campestris
pv. vescicatoria in leaves of *Capsicum annuum* L. ...............................................54

Gil Ortega R. and Palazón Espahol C.
Effect of stylar opening on the occurrence of internal mold
(*Alternaria* sp.) in two pepper cultivars ......................................................56

Harini I., Lakshmi N. and Prakash N.S.
Studies on disease resistance of induced tetraploid of
*Capsicum annuum* L. .........................................................................................58

Hussain A., Ahmad M.N. and Akhtar A.S.
Protect chillies crop from *Phytophthora* - A new disease in Pakistan ..................59

Gil Ortega R., Palazón Espahol C. and Barriuso Vargas J.
Search for *Verticillium dahliae* resistance in *Capsicum* sp.
......................................................................................................................60

Simay E.I.
Bipolaris spicifera - A new seed-rooting pathogene of
*Capsicum annuum* ..........................................................................................62

Depestre T. and Gómez O.
NaCl influence on sweet pepper germination
.....................................................................................................................63

Lanteri S., Belletti P., Nassi M.O. and Quagliotti L.
- Cryo-preservation of pepper and eggplant seeds ............................................64

Vadivel E. and Kannan Bapu J.R.
Studies on coheritability for yield components in eggplant
......................................................................................................................66

Vadivel E. and Kannan Bapu J.R.
Path analysis of yield components in eggplant
......................................................................................................................68

Kapoor K.S., Sharma S.R. and Gangopadhyay S.
Assessment of resistance in eggplant against Sclerotinia wilt
with a new screening technique ......................................................................70
Haploidy and Pepper Breeding: A Review

R. Dumas de Vaulx

INRA. Station d’Amélioration des Plantes Maraîchères,
BP 94 - 84143 MONTFAVET Cedex (France)

Haploidy is not a new subject on Capsicum but it has been developed by all increasing number of laboratories for application to pepper breeding during the last ten years.

Haploids of pepper can be obtained by different ways from the female or male gametophyte.

In 1943, Christensen and Bamford reported the spontaneous development of haploids of pepper in the form of twin embryos. Morgan and Rappleye (1950) developed the study of pairs and triplets and obtained more than 100 haploid plants. In 1954, they showed, that in -9n-n pairs, the -9n partner always results from hybridization and that the haploid partner is always of maternal type.

In 1965, Pochard started an important work on haploidy from twin seedlings. Pochard and Dumas de Vaulx (1971) showed the possibility to obtain haploid plants at sufficient high rates (0.8 per 1000) in agronomical material and to use it for breeding purposes. Some selected diploidized haploids can give high haploid rates (Morgan and Rappleye, 1950; Pochard and Dumas de Vaulx, 1971) and enables the breeder to improve varieties for this property.

Parthenogenetic haploid production strongly depends on the genotype of the female parent but also (in the same proportion) depends on the region where the plants grew (Pochard and Dumas de Vaulx, 1979).

Some works have been made to increase the haploid rate using interspecific pollinations or pollen treated by chemicals, in order to disturb the second pollen mitosis or the fertilization process. These treatments were not successful except the application of Nitrous oxide (N20), under pressure on female flower 4 or 8 hours after pollination (Dumas de Vaulx and Pochard, 1974).

From 1973, the in vitro androgenesis has offered new and more efficient (or regular) possibilities to produce haploid plants of pepper. The first haploid plants obtained thanks to anther culture were described the same year (in 1973) by Wang et al. in China and George and Narayanaswamy in India. In 1974, Saccardo and Devreux obtained high percentage of callus formation and they regenerated a few plants from Italian cultivars.

The anther culture technique was then improved by different laboratories. Sibi et al. (1979) published a modified technique with cold pretreatment of flower buds and specific culture media. An originality of this technique was the transfer of the anthers after 12 days of culture on a medium supplied with 2, 4-D and kinetin to a new medium supplied with kinetin but
no 2,4-D. The most important improvement of this technique was the treatment at +350C in
darkness during the first 2 or 8 days of culture (Dumas de Vaulx et al., 1981) allowing
haploid production from a large range of genotypes or cultivars and at sufficiently high rates
for practical use (5-10 plants per 100 cultured anthers).

Vagner and Havranek (1983, 1985) showed a significant effect of activated charcoal added
in the culture medium for plant production.

Morrison et al (1986) obtained haploids from an interspecific hybrid, between C. annuum
and C. chinense, using cold pretreatment on buds, culture at +35°C for 8 days on a medium
containing charcoal.

The effect of low irradiation on buds at the uninucleate microspore stage was not efficient
before anther culture, (Pandeva, 1986). Wu and Zhaul~ (1986) tried to stimulate pollen
division by anther treatment with acridine yellow. They only induced anomalies in anther
cells, microspores and exine morphology. More recently Munyon et al (1989) obtained good
results using the incubation of anthers at 29°C under continuous light.

In conclusion, the anther culture technique is now sufficiently elaborated to allow haploid
production for practical application to breeding programmes.

Pochard first used pepper haploids

- In the progeny of a haploid plant from the cv. "Doux des Landes", fie found plants with
  25 chromosomes. These p1mos have been sm-ted into phenotypic groups corresponding
to primary trisomics (Pochard, 1970). Trisomics are usefull to make the chromosome
map of the pe"er and recently for application of molecular markers (RFLP).

- In 1971, Pochard and Dumas de Vaulx suggested to use doubled haploids for breeding.
The haploids, from twin seedlings, were obtained from P. plants selected in the cross
"Yolo Wonder" x B107. 48 doubled haploid (DH) lines were observed after colcbicin
treatment and compared to F5 lines selected by pedigree method in the same cross. Some
of the DH lines showed yield characteristics close to those of the F, hybrid derived from
the two parents. Their mean vigour was not weaker than that of inbred lines. In some
cases, their fertility (seed production) was abnormally low.

In the literature several applications to breeding have been described. Chen (1984) studied 79
DH lines and showed a considerable variation between DH lines. However, characters were
uniform within DH lines and between the generations of each DH line.

Jiang and Li (1989) studied the main fruit characters of DH lines derived from the F, sweet x
hot pepper hybrid. During 5 generations, DH lines were uniform but the yields were not
higher than the yield of the F,. Chen (1985) tested the combining ability of DH lines and
obtained hybrids with high yields (especially early yield).

Morrison (1987) evaluated several DH lines from 2 culLivars for several traits in the fields.
Some gametoclonal variation was detected. Generally,
lines were shorter but for other characters both beneficial and deleterious variation were observed. One mutant (upright fruited) was detected in a DH line obtained from a callus of the cv. "Wonder". Some DH lines produced a few seeds.

Generally, the DH lines are homogeneous and stable (with some exceptions) and allow practical use. The lack of seed fertility may result from inbreeding effects. Haploidy is now commonly used by breeding laboratories belonging to both governmental Institutes and private seed companies. New commercial F₁ hybrids may have a DH line as parent.

In pepper, haploidy is now commonly used for genetic analysis. This original practice has been initiated and developed by Pochard. In 1982, ABAK et al studied the transmission of resistance to Phytophthora capsici on roots and sterris by studying DH lines obtained from the cross PM 217 x "Yolo Wonder". A similar study was made by Hendy et al (1985) for Meloidogyne resistance.

The method, described by Pochard et al (1986) and Daubuze (1988) is quite simple. Haploids and DH lines are obtained by culture of anthers collected after the meiosis of F₁ hybrids including a standard cultivar and a resistant genitor (generally of wild type) bearing interesting gene combinations (for disease resistance). The study of recombination of the parental genes (or linked genes) is made at the completely boyfiozygous level. Homozygocity makes the analysis easier, because all the genes are expressed without allelic interactions. Moreover, the main advantage is the possibility to repeat different tests on every genotype. For instance, for disease resistance it is possible to check separately a large set of pathogens and stra-Lns, to compare the reaction of different organs, to study the effect of plant age and to measure the incidence of environmental factors. This method is now commonly applied, and in this Issile of Capsicwm Newsletters one can find a report from Daubuze et al on the resistance of androgenetic DH lines of pepper to Phytophthora capsici and to Tobacco Mosaic Virus at high temperature.

In conclusion, haploid and doubled haploid lines obtained by efficient anther culture techniques are now commonly used in pepper breeding. The DH lines offer new possibilities for rapid fixation of genotypes and genetic analysis. It can be an excellent support for molecular analysis and location of quantitative traits.
Transmission of resistance to Phytophthora capsici on roots and stenches of pepper plants: study of DH lines issued from the cross "PM 217" x "Yolo Wonder" through anther culture. Capsicum Newsletter, 1:62-64.

CHEN, X.S., 1984


CHRISTENSEN, H.M., BAMFORD R., 1943.

Utilisation de lignées haploïdes doublées issues d'androgenèse pour l'étude de l'expression de la résistance aux maladies. Mémoire de DESU, Acad. de Montpellier, USTL, 29 pp.

DAUBEZE, A.M., PALLOIX A., POCHARD E., 1990,
Resistance of androgenetic autodiploid lines of pepper to Phytophthora capsici and Tabacco Mosaic Virus under high temperature. Capsicum Newsletter, 8 (A paraltrre)


Culture in vitro d'antheres de Piment (Capsicum annuum L.) amélioration des taux d'obtention de plantes chez différents genotypes par des traitements A +35°C. Agronomie, 1:859-864.

Parthénogénèse et androgenèse chez le piment. Role actuel dans les programmes de sélection. Le Sé1eclionneur Fran—ai, 36:3-16.


Transmission de la résistance aux nematodes Meloidogyne chitwood (Tylenchida) portée par 2 lignées de Capsicum annuum L. Etude des descendances homozygotes issues d'androegènes. Agronomie, 5:93-100.

Observations and experiments on later generations of sweet x hot pepper derived by anther culture. Acta horticulturae Sinica, 11:191194.


INTERNATIONAL HOT PEPPER TRIAL NETWORK UNTHOPE

The Asian Vegetable Research and Development Center (AVRDC), P.O. Box 42, Shanhua, Tainan 74199 TAIWAN - R.O.C.

The International Hot Pepper Trial Network (INTHOPE) was initiated in 1988 in response to discussion at the International Symposium on Integrated Management Practices for Tomato and Pepper Production in the Tropics. The objective of the network is to facilitate the exchange and evaluation of popular hot pepper landraces and elite germplasm across international test environments. Local selections with at least field tolerance to important diseases (especially W. al) should be prioritized. The coordination of the network is the responsibility of AVRDC, whose principle role is to receive, evaluate, multiply (includes selection), and redistribute germplasm, from and to the network collaborators. Each participant is expected to evaluate at least one multi-locational trial per year, in their own country, and provide feedback (data) on the performance and acceptance of the germplasm. Participation of farmers is encouraged. Standardized evaluation sheets will be provided by AVRDC.

At AVRDC, the INTHOPE evaluation trials will be sown in April and September. In addition, September sowings will be conducted for seed multiplication so that by February; a supply of seed is available for distribution. All entries will be screened for reaction to the pathogens: CW, CVNTV, PVMV, PeW, PVY’ TMV, ToMV, PMMV, Xanthomonas campestris pv. vescaria, Phytophthora capsici, Colletotrichum capsici and C. gloeosporioides. Capsaicin content will also be quantified. Evaluation results will be compiled and distributed to all INTHOPE participants.

Please submit new INTHOPE entries (5 g per entry) to AVRDC (c/o Pepper Breeding) before 1 April or 1 August of each year. Hybrids may enter into the evaluation for comparison, but we obviously cannot maintain these entries. Any contributor of hybrids should supply a seed quantity large enough for regional trials. At AVRDC, we plant 90 plants per trial (30 plants in each of three replications). There are at least 16 cooperators in the network, who are expected to have at least one multi-locational trial per year.

A list of current INTHOPE entries is shown in Table 1.

Additional references

<table>
<thead>
<tr>
<th>Entry</th>
<th>Origin of seed source</th>
</tr>
</thead>
<tbody>
<tr>
<td>1AC Ubatuba. Cambud R.</td>
<td>Brazil</td>
</tr>
<tr>
<td>Tabasco</td>
<td>Holland</td>
</tr>
<tr>
<td>Ludhiana Long Selection</td>
<td>India</td>
</tr>
<tr>
<td>Extra Long Selection</td>
<td>India</td>
</tr>
<tr>
<td>Punjab Lal</td>
<td>India</td>
</tr>
<tr>
<td>Jawahar 218</td>
<td>India</td>
</tr>
<tr>
<td>Gwangju</td>
<td>Korea</td>
</tr>
<tr>
<td>Cheongryong</td>
<td>Korea</td>
</tr>
<tr>
<td>MC 4</td>
<td>Malaysia</td>
</tr>
<tr>
<td>MC 5</td>
<td>Malaysia</td>
</tr>
<tr>
<td>MC 6</td>
<td>Malaysia</td>
</tr>
<tr>
<td>MC 7</td>
<td>Malaysia</td>
</tr>
<tr>
<td>C10-Malay</td>
<td>Malaysia</td>
</tr>
<tr>
<td>Langkap</td>
<td>Malaysia</td>
</tr>
<tr>
<td>Atarodo</td>
<td>Niger</td>
</tr>
<tr>
<td>Nainang Local</td>
<td>Senegal</td>
</tr>
<tr>
<td>Safi</td>
<td>Senegal</td>
</tr>
<tr>
<td>Salmon</td>
<td>Senegal</td>
</tr>
<tr>
<td>Ssuchuan 1</td>
<td>Taiwan</td>
</tr>
<tr>
<td>Chicken Heart</td>
<td>Taiwan</td>
</tr>
<tr>
<td>Yangjiao</td>
<td>Taiwan</td>
</tr>
<tr>
<td>Long Fruit</td>
<td>Thailand (two selections)</td>
</tr>
<tr>
<td>Huaruar</td>
<td>Thailand</td>
</tr>
<tr>
<td>EKU Cluster</td>
<td>Thailand</td>
</tr>
<tr>
<td>Haue See Toan</td>
<td>Thailand</td>
</tr>
<tr>
<td>Unknown Y21</td>
<td>Thailand</td>
</tr>
<tr>
<td>Unknown Y22</td>
<td>Thailand</td>
</tr>
<tr>
<td>Unknown Y23</td>
<td>Thailand</td>
</tr>
<tr>
<td>PSR212A88</td>
<td>USA</td>
</tr>
<tr>
<td>PSR209688</td>
<td>USA</td>
</tr>
</tbody>
</table>
CZECHOSLOVAK SWEIET YEPPER CULTIVARS

Magdeldna Valsiková

Research and Breeding Institute for Vegetatable and Special Plants, 947 01 Hurbanovo, Czechoslovakia

Nowadays are grown 15 cultivars of sweet pepper in Czechoslovakia /Tab. 1/. Their properties are described in Table 2.

<table>
<thead>
<tr>
<th>Cultivars</th>
<th>Date from</th>
<th>For open field</th>
<th>For indoor growing</th>
</tr>
</thead>
<tbody>
<tr>
<td>‘Andrea’</td>
<td>1987</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>‘Citrinia’</td>
<td>1977</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>‘Eva’</td>
<td>1989</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>‘Dora’ F1</td>
<td>1985</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>‘Grandova’</td>
<td>1987</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>‘Jara’</td>
<td>1987</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>‘Jova’</td>
<td>1989</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>‘Jubila’</td>
<td>1987</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>‘Klenot’</td>
<td>1983</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>‘Konika’</td>
<td>1983</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>‘Morava’</td>
<td>1977</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>‘PCR’</td>
<td>1961</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>‘Perla’</td>
<td>1977</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>‘Rubinova’</td>
<td>1988</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>‘Vesna’</td>
<td>1982</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Cultivars</td>
<td>Average plant height /mm/</td>
<td>Average fruit size /lxd/ /mm/</td>
<td>Position of fruits</td>
</tr>
<tr>
<td>------------</td>
<td>---------------------------</td>
<td>-------------------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>‘Andrea’</td>
<td>460</td>
<td>119 x 62</td>
<td>pendant</td>
</tr>
<tr>
<td>‘Citrinia’</td>
<td>480</td>
<td>116 x 42</td>
<td>pendant</td>
</tr>
<tr>
<td>‘Eva’</td>
<td>720</td>
<td>128 x 64</td>
<td>pendant</td>
</tr>
<tr>
<td>‘Dora’ F&lt;sub&gt;1&lt;/sub&gt;</td>
<td>650</td>
<td>162 x 57</td>
<td>pendant</td>
</tr>
<tr>
<td>‘Grandova’</td>
<td>320</td>
<td>107 x 71</td>
<td>pendant</td>
</tr>
<tr>
<td>‘Jara’</td>
<td>600</td>
<td>124 x 57</td>
<td>pendant</td>
</tr>
<tr>
<td>‘Jova’</td>
<td>380</td>
<td>56 x 75</td>
<td>Pend. mixed</td>
</tr>
<tr>
<td>‘Jubila’</td>
<td>420</td>
<td>124 x 61</td>
<td>pendant</td>
</tr>
<tr>
<td>‘Klenot’</td>
<td>453</td>
<td>111 x 56</td>
<td>pendant</td>
</tr>
<tr>
<td>‘Konikaa’</td>
<td>516</td>
<td>113 x 54</td>
<td>pendant</td>
</tr>
<tr>
<td>‘Morava’</td>
<td>396</td>
<td>117 x 45</td>
<td>pendant</td>
</tr>
<tr>
<td>‘PCR’</td>
<td>810</td>
<td>113 x 45</td>
<td>pendant</td>
</tr>
<tr>
<td>‘Perla’</td>
<td>368</td>
<td>126 x 43</td>
<td>pendant</td>
</tr>
<tr>
<td>‘Rubinova’</td>
<td>440</td>
<td>120 x 51</td>
<td>pendant</td>
</tr>
<tr>
<td>‘Vesna’</td>
<td>470</td>
<td>142 x 49</td>
<td>Pendant</td>
</tr>
</tbody>
</table>
PAPRIKA GERPLASM CONTRAST QUALITATIVE TRAITS FROM KATRAINT (INDIA)

S. Joshis, P.G. Thakur, T.S. Verma and H.C. Verma

Indian Agricultural Research Institute, Regional Sta-Lion
Klatrain (Kullu Valley) H.P. 175129 (INDIA)

The increasing commercial importance of paprika both as a spice and a vegetable with the large-scale cultivation in both tropical and temperate regions has resulted in establishing breeding programmes for its improvement in many countries. Germplasm with diverse genetic base is the major basic source, needed essentially for crop improvement. The germplasm preservation is a worldwide concern and conservation of the specific diverse gene pools will be useful to breeders to ensure the effectiveness of breeding. The main objective of presenting the description of the genotypes (Table 1) with contrast qualitative traits viz; purple pigmentation, anthocyninless anthers, abundant pubescence and deciduous fruit persistence be a valuable information to breeders in evolving high quality paprika varieties The documented data is based on the IBFGR descriptors, so that there must be an international uniformity. Here the individual genotype possess unique characters and can be utilized as a marker gene, most potential in making genetic studies, as i-11 can be isolated phenotypically from rest of the population/genotypes.

A small amount of seed for experimental use of these genotypes can be obtained by writing directly to the authors or through the Director, National Bureau of Plant Genetic Resources (NBPR), Pusa Campus, New Delhi – 110012.
Table 1. Germplasm characterization and preliminary evaluation data with contrast traits.

<table>
<thead>
<tr>
<th>Collected/Introduced from</th>
<th>Kt-Pl-2-1</th>
<th>LCA-235</th>
<th>EC 2C3585</th>
<th>Kt-Pl-17</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Heritable traits</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plant growth habit</td>
<td>Erect</td>
<td>Erect</td>
<td>Compact</td>
<td>Erect</td>
</tr>
<tr>
<td>Stem and leaf pubescence</td>
<td>Abundant*</td>
<td>Glabrous</td>
<td>Glabrous</td>
<td>Abundant*</td>
</tr>
<tr>
<td>Stem colour</td>
<td>Green</td>
<td>Green</td>
<td>Green</td>
<td>Purple*</td>
</tr>
<tr>
<td>Pedicel position at anthesis</td>
<td>Erect</td>
<td>Pandent</td>
<td>Erect</td>
<td>Erect</td>
</tr>
<tr>
<td>Corolla colour</td>
<td>White</td>
<td>White</td>
<td>White</td>
<td>Violet*</td>
</tr>
<tr>
<td>Calyx margin shape</td>
<td>Dentante</td>
<td>Dentante</td>
<td>Intermediate</td>
<td>Dentate</td>
</tr>
<tr>
<td>Fruit position</td>
<td>Erect</td>
<td>Declining</td>
<td>Erect</td>
<td>Erect</td>
</tr>
<tr>
<td>Fruit colour immature</td>
<td>Green</td>
<td>Green</td>
<td>Yellow*</td>
<td>Purple*</td>
</tr>
<tr>
<td>Fruit colour mature</td>
<td>Red</td>
<td>Red</td>
<td>Red</td>
<td>Red</td>
</tr>
<tr>
<td>Fruit length</td>
<td>Short</td>
<td>Medium</td>
<td>Medium</td>
<td>Short</td>
</tr>
<tr>
<td>Fruit shape</td>
<td>Elongate</td>
<td>Elongate</td>
<td>Conica*</td>
<td>Elongate</td>
</tr>
<tr>
<td>Fruit shape at peduncle attachment</td>
<td>Acute</td>
<td>Acute</td>
<td>Cordate</td>
<td>Acute</td>
</tr>
<tr>
<td>Fruit shape at blossom end</td>
<td>Pointed</td>
<td>Pointed</td>
<td>Blunt</td>
<td>Pointed</td>
</tr>
<tr>
<td>Fruit persistance</td>
<td>Deciduous</td>
<td>Persistent</td>
<td>Persistent</td>
<td>Persistent</td>
</tr>
<tr>
<td>Anther colour</td>
<td>Pale Blue</td>
<td>Yellow</td>
<td>Yellow*</td>
<td>Purple*</td>
</tr>
<tr>
<td>Fruit weight (g)</td>
<td>4.2</td>
<td>5.0</td>
<td>39.1</td>
<td>3.6</td>
</tr>
<tr>
<td>Fruit wall thickness (cm)</td>
<td>&lt;0.1</td>
<td>&gt;0.1</td>
<td>&lt;0.3</td>
<td>&gt;0.1</td>
</tr>
<tr>
<td>Fruit yield/plant (kg)</td>
<td>0.124</td>
<td>0.160</td>
<td>0.932</td>
<td>0.141</td>
</tr>
</tbody>
</table>

Note: These genotypes did not show any severe symptoms of important disease viz; anthracnose (*Collettrichum* sp.) and bacterial leaf spot (*Xanthomonas vesicatoria*) in Katrain (temperate) conditions.

* Contrast traits of horticultural importance.
INFLUENCE OF VARIOUS DATES ON THE YIELD PERFORMANCE OF CHILLIES UNDER FAISALABAD CONDITIONS.

A. HUSSAIN; M.N. AHMAD
Vegetable Research Institute, Faisalabad.

Virus “smalling of leaves”, Colletotrichum and Phytophthora disease in Chillies are the major constraints for the reduction of yield of chillies in Pakistan. When the disease is severe especially during rainy season, the crop fails altogether. Under these circumstances these studies were planned to shift the transplanting time to see its effects on the yield of chillies.

Four dates of transplanting at 14 days interval during the period of 10th February to 30th March were studied for this purpose for two years.

Optimum transplanting date range in chillies under Faisalabad condition was found from 10th February to 10th March for getting high yield.

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Treatment/ Date</th>
<th>G.P.</th>
<th>Khundari</th>
<th>Av.</th>
<th>Trt./date</th>
<th>G.P.</th>
<th>PS-I</th>
<th>Av.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>10/2</td>
<td>3.382</td>
<td>1.089</td>
<td>2.235</td>
<td>17/2</td>
<td>3.46</td>
<td>3.88</td>
<td>3.67</td>
</tr>
<tr>
<td>2.</td>
<td>24/2</td>
<td>3.173</td>
<td>0.959</td>
<td>2.060</td>
<td>3/3</td>
<td>2.46</td>
<td>3.25</td>
<td>2.85</td>
</tr>
<tr>
<td>3.</td>
<td>10/3</td>
<td>2.159</td>
<td>0.636</td>
<td>1.397</td>
<td>16/3</td>
<td>1.86</td>
<td>3.51</td>
<td>2.20</td>
</tr>
<tr>
<td>4.</td>
<td>24/3</td>
<td>1.615</td>
<td>0.032</td>
<td>0.824</td>
<td>30/3</td>
<td>0.91</td>
<td>1.52</td>
<td>1.21</td>
</tr>
<tr>
<td>Mean:</td>
<td>2.591</td>
<td>0.678</td>
<td></td>
<td></td>
<td></td>
<td>2.17</td>
<td>2.80</td>
<td></td>
</tr>
<tr>
<td>Cd for trt. Date.</td>
<td>0.631</td>
<td>Cd for trt. Date</td>
<td>0.55</td>
<td>Cd2 ““</td>
<td>0.907</td>
<td>Cd2 ““</td>
<td>0.79</td>
<td></td>
</tr>
<tr>
<td>Cd2 ““</td>
<td>0.253</td>
<td>Cd for varieties</td>
<td>0.25</td>
<td>Cd2 ““</td>
<td>0.354</td>
<td>Cd2 ““</td>
<td>0.37</td>
<td></td>
</tr>
<tr>
<td>G.P. = ‘Gola Peshawari’</td>
<td>PS-1</td>
<td>= ‘Peshawar Selection No. I.’</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table
Showing the data of fresh ripened red fruit of Chillies.

Yield in metric tons per acre
The studying of natural cross-pollination (ncp) began several years ago in Bulgaria. Daskalov and Popov published the first results in 1941. The ncp occurred from 0 to 75% at the studied varieties and lines. It depended on the fruit size (small fruit - higher ncp) and on the flower structure. Hristov - Genchev (1965) studied the length of stigma. The small fruit types had longer stigma and therefore the ncp was 20 - 25% in Sofia. More ncp data were published from Hungary, Italy and Spain in the Capsicum Newsletter and at the Eucarpia Capsicum Meeting in the recent past. These results originated from the repeated experiments. Our data originated from the pepper field of Novo Zelezare Cooperative (District Plovdiv). The cooperative grows pepper on 30 hectares every year. The cv.'Albena' (anthocyanin less) and the cv. 'Sofiska kapial (normal anthocyanin content) are the main varieties. The distance of rows is 0.7m, the distance of plants is 0.2m. The Cooperative used the classical Bulgarian irrigation ditch method. We harvested the fruits only from the cv. Albena plants at the end of August (flowered in June) and in the middle of September (flowered in July). From the directly neighbour raw (the first cv.'Albena' row was 0.7m to the first cv. Sofiska kapial row) we harvested 23 fruits in August and 30 fruits in September. From the tenth row (the tenth row was 7.0m to the first cv. 'Sofiska kapial row) we harvested 20 fruits in August and 30 fruits in September. The average seed/fruit was 111 in August and 145 in September. We analysed the color of hypocotyl (the hypocotyl of cv. 'Albenalis green, the hypocotyl of cv.'Sofiska kapialand the F hybrid is lilac) and from the number of green and lilac hypocotyl was calculated the percentage of ncp. The ncp was in the first row 8.84% in June, 7.19% in July and in the tenth row 0.32% in June, 0.48% in July. This year the climate was extreme in Bulgaria and probably this was the reason of low percentage of ncp.

References
DASKALOV, H. - POPOV, P. 1941. Osnovny na zelentchukoizvodstvo v Bulgaria Sofia?
POPOVA, D. - MIHAJLOV, I., 1974. Situdies on the biological basis of hybrid seed production in pepper (Capsicum annuum L.)
GENETICS OF SIX QUANTITATIVE TRAITS IN SWEET PEPPER (CAPSICUM ANNUM L.)

Subodh Joshi
Indian Agricultural Research Institute Regional Station, Katrain. Kullu H.P. (India) 175129

The genetic research done on sweet pepper improvement has revealed that fruit yield in this crop is mainly determined by traits, number of fruits per plant, number of primary branches, fruit length and plant height (Joshi and Singho, 1983). The knowledge about the nature and magnitude of gene effects of these horticultural traits may greatly help breeders in formulating an efficient breeding programme. Therefore, the analysis of gene action following generations mean analysis was studied in six generations by estimation of six parameters (m,d,h,i,j,l) in three interacting crosses of sweet pepper diverse nbred, 'HC-21C' (210), 'Rub King' (RK) and 'California wonder' (CW) with 'Elephant Trunk' (TET).

The value of estimates for six metric traits in three crosses are given in the table. The results revealed the important role of epistasis in the control of those traits as having higher values of interaction parameters in general than the values of d and h parameters with an important role of duplicate type epistasis. Which largely depends upon the signs of h and l (i.e. similar signs have predominance of complementary while, different signs indicate duplicate type epistasis. Among epistatic, l effects are the most important followed by j, effects. However, it is suggested that dominance components could be exploited through heterosis breeding as has also been found feasible in this crop (Joshi and Singh 1987). Methods, which exploit non-additive, gene actions such as reciprocal recurrent selection could hold promise for improvement of the characters studied.

Table: Estimates of gene effects and type of epistasis for six metric traits in three crosses

<table>
<thead>
<tr>
<th>Trait</th>
<th>Interacting</th>
<th>Gene effects</th>
<th>Type of</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>g Crosses</td>
<td>M</td>
<td>D</td>
<td>H</td>
</tr>
<tr>
<td>--------------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td><strong>Plant height</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RK X ET</td>
<td>55.2*</td>
<td>-1.64</td>
<td>-46.5*</td>
</tr>
<tr>
<td>210 X ET</td>
<td>44.9*</td>
<td>-2.07</td>
<td>-46.0*</td>
</tr>
<tr>
<td>CW X ET</td>
<td>51.8*</td>
<td>1.13</td>
<td>-30.6*</td>
</tr>
<tr>
<td>RK X ET</td>
<td>5.1*</td>
<td>-0.05</td>
<td>-1.0</td>
</tr>
<tr>
<td>210 X ET</td>
<td>5.3*</td>
<td>0.26</td>
<td>-1.0</td>
</tr>
<tr>
<td>CW X ET</td>
<td>5.0*</td>
<td>0.03</td>
<td>0.2</td>
</tr>
<tr>
<td><strong>Number of primary branches</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RK X ET</td>
<td>10.2*</td>
<td>-.340*</td>
<td>5.4*</td>
</tr>
<tr>
<td>210 X ET</td>
<td>9.5*</td>
<td>-0.63</td>
<td>14.2*</td>
</tr>
<tr>
<td>CW X ET</td>
<td>9.2*</td>
<td>0.64</td>
<td>13.5*</td>
</tr>
<tr>
<td><strong>Fruit Length</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RK X ET</td>
<td>10.9*</td>
<td>1.40</td>
<td>16.2*</td>
</tr>
<tr>
<td>210 X ET</td>
<td>12.6*</td>
<td>2.23*</td>
<td>11.7*</td>
</tr>
<tr>
<td>CW X ET</td>
<td>10.5*</td>
<td>1.93*</td>
<td>17.4*</td>
</tr>
<tr>
<td><strong>Fruit circumference</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RK X ET</td>
<td>10.6*</td>
<td>-0.76</td>
<td>5.0</td>
</tr>
<tr>
<td>210 X ET</td>
<td>9.5*</td>
<td>-1.10*</td>
<td>0.7</td>
</tr>
<tr>
<td>CW X ET</td>
<td>15.1*</td>
<td>-0.47</td>
<td>5.8</td>
</tr>
<tr>
<td><strong>Number of fruit per plant</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RK X ET</td>
<td>0.3*</td>
<td>0.02</td>
<td>0.21*</td>
</tr>
<tr>
<td>210 X ET</td>
<td>0.3*</td>
<td>-0.02</td>
<td>-0.01</td>
</tr>
<tr>
<td>CW X ET</td>
<td>0.4*</td>
<td>0.05</td>
<td>0.17</td>
</tr>
</tbody>
</table>

*Significant at 5% level, d=duplicate, c=Complementary.

REFERENCES:

INHERITANCE IN SWEET PEPPER (Capsicum annuum L.)
P.C. Thakur
Indian Agricultural Research Institute
Regional Station, Katrain - 175129 (H.P.), India

The heritable components of variation can be assessed by concerned number of genes. To work out the inheritance of quantitative traits in number of genes or effective factors have been devised in biometrical analysis on the concept of Mendelian genetics. The genes or groups of genes showing non-detectable phenotypic differences are considered as effective factors (Mather and Jinks, 1982). The estimation of number of genes or effective factors is obscured by complex allelic and non-allelic interactions. Therefore estimates were made assuming all the loci are unlinked and have equal effect.

The present studies were made to estimate the number of genes or effective factors governing ten quantitative traits in sweet pepper, adopting the method proposed by Wright (1968). The observations were recorded on 8 varieties and their 20 F₁ and F₂ generations, raised during 1981.

Analysis of data revealed that gay's taken to flowering, plant height, number of branches per plant, number of fruits per plant, average fruit weight, fruit shape index, flesh thickness, days to first harvesting, early yield and total yield per plant are governed by 9, 7, 25, 8, 3, 25, 95, 18, 18 and 12 gene groups or effective factors, respectively. Dempsey (1960) reported 3 pairs of polymeric genes control plant height while fruit wall thickness was affected by 8 pairs of genes. But in the present case these values are higher, might be due to lesser variation in size of their effect. Thakur et al. (1980) found that days to first harvesting and early yield per plant are governed by 31 genes each showing close association. But in the present findings 18 genes control each of these traits. It can presumed that same gene group is responsible for expression of both the traits. Total yield per plant is governed by 12 genes. Nandpuri and Kumar (1973) found 9 gene groups affecting this trait in chilli.

References
The genetic variability in the base population is a prerequisite for effective crop improvement programs. A study was therefore undertaken in chilli involving F2 progenies of 451 intervarietal crosses obtained from a 10 X 10 parental set (excluding reciprocals) with 12 quantitative traits from the 1987-88 and 1988-89 at the Horticultural Research Station, Orissa University of Agriculture and Technology, Bhubaneswar.

The results (Table) revealed that the maximum genotype variance was for seeds/fruit and minimum variance was for seeds/fruit and minimum for 100 seed weight. Dry yield/plant, fruit/plant, plant spread and plant height showed higher genotypic variances and followed seeds/fruit. The genetic coefficients of variation ranged from 9.19 for fruit girth to 36.26 for dry yield/plant. The estimates of heritability varied from 54.37% for fruit girth to 98.74% for dry yield/plant. Genetic advance was the highest (29.23) for seeds/fruit and lowest for 100 seed weight.

High genotypic coefficient of variation along with high heritability and genetic advance will provide better information than either of the parameters alone. Dry yield/plant, plant spread, fruits/plant, dry weight of fruits and seeds/fruit exhibited high genotypeic coefficient of variation, high heritability and genetic advance and these are the characters, which are to be taken into consideration for effective selection in chilli.
Table  Genotropic and phenotypic variances and coefficients of variation, heritability, genetic advance for various quantitative characters in F2 generation of a 10 x 10 diallel cross in chilli (Pooled data of 2 seasons)

<table>
<thead>
<tr>
<th>Character</th>
<th>Genotypic variance</th>
<th>Phenotypic variance</th>
<th>Genotypic coefficient of variation</th>
<th>Phenotypic coefficient of variation</th>
<th>Heritability in broad sense (%)</th>
<th>Genetic advance</th>
<th>Genetic advance as % of them</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry yield per plant (g)</td>
<td>74.70</td>
<td>74.66</td>
<td>36.26</td>
<td>36.49</td>
<td>98.74</td>
<td>17.69</td>
<td>74.23</td>
</tr>
<tr>
<td>Plant height (cm)</td>
<td>22.56</td>
<td>23.89</td>
<td>11.41</td>
<td>11.74</td>
<td>94.43</td>
<td>9.51</td>
<td>22.84</td>
</tr>
<tr>
<td>Plant spread (cm)</td>
<td>42.54</td>
<td>43.91</td>
<td>24.60</td>
<td>24.96</td>
<td>97.11</td>
<td>13.26</td>
<td>49.96</td>
</tr>
<tr>
<td>No. of primary branches</td>
<td>0.60</td>
<td>0.69</td>
<td>20.68</td>
<td>22.09</td>
<td>87.65</td>
<td>1.50</td>
<td>39.89</td>
</tr>
<tr>
<td>Fruit length (cm)</td>
<td>1.93</td>
<td>0.69</td>
<td>16.19</td>
<td>16.86</td>
<td>92.15</td>
<td>2.75</td>
<td>31.97</td>
</tr>
<tr>
<td>Fruit girth (cm)</td>
<td>0.084</td>
<td>2.10</td>
<td>9.19</td>
<td>12.46</td>
<td>54.37</td>
<td>0.44</td>
<td>13.96</td>
</tr>
<tr>
<td>No. of fruits per plant</td>
<td>57.99</td>
<td>0.15</td>
<td>24.55</td>
<td>24.74</td>
<td>98.48</td>
<td>15.57</td>
<td>50.19</td>
</tr>
<tr>
<td>Weight of 10 fresh fruits (g)</td>
<td>26.38</td>
<td>27.74</td>
<td>17.89</td>
<td>18.12</td>
<td>95.11</td>
<td>10.32</td>
<td>35.50</td>
</tr>
<tr>
<td>Weight of 10 dry fruits (g)</td>
<td>4.52</td>
<td>4.87</td>
<td>26.89</td>
<td>27.90</td>
<td>92.85</td>
<td>4.22</td>
<td>53.35</td>
</tr>
<tr>
<td>Seed weight per fruit (g)</td>
<td>0.0097</td>
<td>0.0014</td>
<td>31.36</td>
<td>33.94</td>
<td>95.40</td>
<td>0.19</td>
<td>60.31</td>
</tr>
<tr>
<td>No. of seeds per fruit</td>
<td>219.08</td>
<td>38.39</td>
<td>27.04</td>
<td>28.21</td>
<td>91.90</td>
<td>29.23</td>
<td>53.40</td>
</tr>
<tr>
<td>Weight of 100 seeds (g)</td>
<td>0.0068</td>
<td>0.0079</td>
<td>14.44</td>
<td>15.50</td>
<td>86.78</td>
<td>0.16</td>
<td>27.87</td>
</tr>
</tbody>
</table>
A 10 x 10 half diallel set involving geographical divergent parents was studied for dry yield/plant in F₂ generation to assess the potentiality of the crosses towards the frequency of positive transgressive segregants (PTS) and the magnitude of transgression during Rabi 1988-89 at the Regional Research Station Orissa University of Agriculture and Technology, G. Udayagiri (ORISSA). The frequency of positive transgressive segregants and magnitude of transgression for dry yield/plant were calculated as per the method suggested by Senapati (1988).

The ranges of variation in the F₂s and the respective parental range (over both the parents) along with other parameters of transgressive segregation for yield are presented in Table 1. Assorting the environmental fluctuations were of similar order both in parents and F₂ a., a comparison of the limits of variation in F₉ with those of parental ranges would indicate whether or not there was transgressive segregation.

A joint consideration of FPTS, PTSM and MrI (mean of top 10%) would show that (‘J-218’x’KCS-1’), (‘BR-Red’x’CA-58’), (‘J-218’x’CA-586’) and (‘J-218’x’Pusa Jwala’) are crosses of high potential for improvement in yield.

REFERENCE

Table 1. Frequency of positive transgressive segregation and magnitude of transgression of promising F2 progenies for dry yield per plant (gm) in 10 x 10 half diallel cross of chilli

<table>
<thead>
<tr>
<th>Crosses</th>
<th>Parental range (g)</th>
<th>Higher parental mean</th>
<th>F F2 range (g)</th>
<th>F2 mean</th>
<th>Frequency of PTS (FPTS)</th>
<th>Mean of PTS (PTSM)</th>
<th>Average transgression (APT)</th>
<th>Mean of top 10% (MTI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 x 2</td>
<td>18.20-27.94</td>
<td>23.46</td>
<td>10.42-51.41</td>
<td>38.67</td>
<td>24</td>
<td>48.92</td>
<td>25.46</td>
<td>71.32</td>
</tr>
<tr>
<td>1 x 3</td>
<td>16.48-26.14</td>
<td>20.73</td>
<td>14.72-37.84</td>
<td>27.67</td>
<td>12</td>
<td>31.84</td>
<td>11.11</td>
<td>60.84</td>
</tr>
<tr>
<td>1 x 4</td>
<td>17.52-25.32</td>
<td>20.89</td>
<td>16.84-50.91</td>
<td>37.71</td>
<td>30</td>
<td>41.34</td>
<td>20.45</td>
<td>73.98</td>
</tr>
<tr>
<td>1 x 6</td>
<td>18.20-31.42</td>
<td>25.96</td>
<td>13.93-65.83</td>
<td>52.09</td>
<td>35</td>
<td>64.82</td>
<td>38.86</td>
<td>99.32</td>
</tr>
<tr>
<td>1 x 7</td>
<td>15.48-25.32</td>
<td>20.56</td>
<td>12.34-48.46</td>
<td>31.22</td>
<td>20</td>
<td>31.00</td>
<td>10.44</td>
<td>61.24</td>
</tr>
<tr>
<td>1 x 8</td>
<td>13.82-29.02</td>
<td>21.96</td>
<td>15.06-49.73</td>
<td>38.07</td>
<td>27</td>
<td>40.04</td>
<td>18.08</td>
<td>73.20</td>
</tr>
<tr>
<td>1 x 10</td>
<td>18.20-28.90</td>
<td>23.42</td>
<td>16.80-49.08</td>
<td>38.64</td>
<td>16</td>
<td>40.50</td>
<td>17.08</td>
<td>70.84</td>
</tr>
<tr>
<td>2 x 4</td>
<td>17.52-27.94</td>
<td>23.46</td>
<td>15.94-44.04</td>
<td>41.14</td>
<td>32</td>
<td>38.42</td>
<td>14.96</td>
<td>78.40</td>
</tr>
<tr>
<td>2 x 5</td>
<td>19.82-30.84</td>
<td>26.25</td>
<td>14.87-50.80</td>
<td>36.36</td>
<td>20</td>
<td>40.21</td>
<td>13.96</td>
<td>61.20</td>
</tr>
<tr>
<td>2 x 7</td>
<td>15.48-27.94</td>
<td>23.46</td>
<td>17.72-48.94</td>
<td>33.15</td>
<td>18</td>
<td>39.82</td>
<td>16.36</td>
<td>64.00</td>
</tr>
<tr>
<td>2 x 8</td>
<td>13.92-29.02</td>
<td>23.46</td>
<td>16.84-50.24</td>
<td>33.11</td>
<td>15</td>
<td>42.42</td>
<td>18.96</td>
<td>60.40</td>
</tr>
<tr>
<td>6 x 10</td>
<td>19.87-31.42</td>
<td>25.96</td>
<td>14.89-51.08</td>
<td>36.76</td>
<td>19</td>
<td>40.72</td>
<td>14.76</td>
<td>70.20</td>
</tr>
</tbody>
</table>

N.B. : 1 to 10 are parents

Capsicum Nmsletter, 8-9 (1990), 33.

F2 DIALLEL ANALYSIS IN CHILLI (CAPSICUM ANNUUM L.)

S.C. Sahoo¹, S.N. Misbra 2 and, R * So Mishra 3
College of Agriculture
Orissa University of Agriculture and Technology,
Bhubaneswar-751003, ORISsA (India)

1. Junior Agricultural Officer (Horticulture), Ekarmrakanan, Bhubaneswar
2. Senior Scientist (Hort.), HARP, G. Udayagiri
In a F2 diallel analysis, the performance of 45 F2 progenies involving 10 genetically diverse chilli cultivars (‘J-219,’BR-Red,’G-4’, 'CA-586', 'K-2', ‘KCS-1’, ‘S-118-21’, 'Pusa Jwaia’, 'Sindur', 'Lam-x-235’)) were studied for yield and other character performance, combing ability and gene action at ten locations with 12 quantitative characters (plant height, plant spread, primary branches/plant, fruit length, fruit girth, fruits/plant, weight of 10 fresh fruits, weight of 10 dry fruits, dry yield/plant, seed weight/fruit, seeds/fruit, 100-seed weight during Rabi 1988-89.

The analysis of variance for R.B.D. under diallel analysis showed highly significant differences among treatments for all the characters. The mean performance for dry yield/plant showed that (J-218‘x’KCS-1’) was the best cross studies on combining ability revealed that variances for GCA- and SCA were highly significant in all the characters. The magnitude of GCA variance was higher than that of SCA in all the characters except plant height, plant spread and 100 seed weight indicating preponderance of additive genetic component in these characters. BR-Red was the best general combiner for yield and yield attributing characters. The estimates of additive genetic variance (D) were significant for plant spread, seed weight/fruit, seeds/fruit and 100 seed weight. Two estimates of genetic variance (H1) and (H2) were significant for all the 12 characters. Over dominance was observed in all the characters since the ratio of $\frac{1}{4}$ (H1/D) $\frac{1}{2}$ is more than unity.

The outstanding cross combinations (J-2 lEt x Vk-580, 218’x'CA-586’), (Pusa Jwala’x’Sinduir’) and (‘Sindur’ x 'Lax-x-235’) offer excellent material for further improvement through selection for isolating superior lines of transgressive segregants.
VARIATION IN FASCICULATION IN F4-POPULATIONS OF PEPPER

J.G. VAN DER BEEK* & A. LTIFI**

*Ministry of Foreign Affairs, P.O.Box 20061, The Hague, THE NETHERLANDS
**Station d'Appui de la Medjerda, 2010 Manouba, TUNISIA

Fasciculation in pepper (Capsicum annuum L.) is expressed as a shortening of internodes, resulting in compact, bushy plants.

The inheritance of this character to be monogenetic recessive (symbol fa).

Variation in fasciculation has been observed in our breeding programme, while studying the descendence of FaFa x fafa for other purposes: not always all internodes are shortened, which results in an incomplete fasciculation of the plant.

Variation in fasciculation permits a discrimination in different growing types (figure 1). Classification is based on differences in the number of shorted internodes and the nodelevel on which the fasciculation starts. The criterium for fasciculation is the development of three or more flowers on a bunch which morphologically means at least two shortened internodes. Fa-1 shows fasciculation at the first node-level fa-2 at the second, etc.. Furthermore, fasciculation on a certain node-level can be repeated on a following level, for example fa-1,2. fa-3 doesn’t necessarily demonstrate fasciculation at all third node-levels of the same plant; this is the same for fa-4 etc…

In F4 (FaFa x fafa)-populations observation have been made for different growing types; results are summarized in figure 2. All populations have the same local breeding line as fasciculate parent. The fa-gene originates from ‘SM 477’. All plants of the observed F1’s were phenotypically of normal growing type and F2’s had significant 3:1 segregation for normal and fasciculate types, which supports the monogenetic recessive inheritance of fa. In the F3 fafa-plants have been selected, except in the case of M2: for this population a heterozygous F3-plant have significant 3:1 segregation for normal and fasciculate types in the F4.

The populations showed a variation in reparation of the fasciculate growing types. E2 for examples is highly fasciculated with 90% fa-1. Its F3 was also a plant of fa-1 growing type. Apparently selection is possible for fa-1. Unfortunately the growing ypes of the other F3-selections have not been registered. It is not unlikely that minor genes could be involved in the expression of fasciculation, operating in the presence of fa-gene.

Oleoresin *capsicum* is the product obtained by solvent extraction of the dried ripe fruits of *capsicum* and the subsequent removal of the solvent. Oleoresin have found increasing industrial use in place of ground chillies, being used in food industry, beverages and pharmaceuticals. There is an increase of about 50 per cent in foreign exchange earnings due to additional value of processing charges, solvent cost and packing. For pharmaceutical purpose only high capsaicinoids oleoresin is used which is made from highly pungent varieties of chillies.

'Pusa jwala has, therefore, been developed for high capsaicinoids content (Pankar and Magar, 1978; Tewari, 1979). 'Pusa jwala has also been reported to be an excellent variety for giving high yield of oleoresin (Krishnakumari and Peter, 1986). Capsicum *frutescens* are famous for their pungency world over and are official of the British pharmacopaea. 'Pusa jwala' was therefore crossed with a variety of *C. frutescens* “I.C. 31339’ for enhancing capsaicinoids in oleoresin in Indian chillies. The cross 'Pusa jwala' x 'I.C. 31339 has given exceptionally good quality lines superior over parental varieties. The transgressant lines 'P.S. 31-3' and 'LG-1’ have attained superiority over both the parental varieties by possessing 20 per cent and 27.5 per cent capsaicinoids in oleoresin, respectively. The parental varieties 'Pusa Jwala' and 'I.C. 31339' have capsaicinoids in oleoresin 8 and 15 per cent, respectively (Fig.).

REFERENCES


HISTOGRAM OF VARIATION OF HIGH CAPSAICIN OLEORESIN STRAINS OF THE CROSS ‘PUSA JWALA’ X ‘I.C. 31339’

Verticle: Capsaicin per cent
MONITORING INTERSPECIFIC HYBRIDIZATION BETWEEN CAPSICUM BACCATUM C. CHACOENSE AND C. ANNUUM WITH ISOENZYMES.

R.P. Andrzejewski *, I.J. Odrzykoski **, E. Andrzejewska **

* Dept. of Genetics and Plant Breeding, University of Agriculture, Zgorzelecka Street 16, 60-198 Poznan, Poland

** Dept. of Genetics, A. Mickiewicz University, Dabrowskiego Street 165, 60-594 Poznan, Poland

We have studied electrophoretic Phenotypes of 13 enzymes in 15 plants from three species: Capsicum annuum cv. ‘Poznanska Slodka’, C. baccatum and C. chacoense using standard starch gel electrophoresis (Vallejos 1983, McLeod et al. 1983). These plants were used in interspecific hybridization program.

Superoxide dismutase (SOD) electrophoretic variants were species specific. Variants of glutamate oxaloacetate transaminase (GOT), phosphoglucomutase (PGM), isocitrate dehydrogenase (IDH) and shikimate dehydrogenase (SKDH) differentiated between C. chacoense and C. annuum but not between C. baccatum and C. annuum. These differences were used to verify hybrid origin of progeny in crosses: C. baccatum x C. annuum and C. chacoense x C. annuum. All hybrid progeny shows heterozygous electrophoretic phenotype expected in crosses between parents with different alleles (Fig. 1).

Enzymes were extracted from a small portion of leaf tissue in young seedlings without killing a plant. This procedure allows eliminating seedling produced by accidental self-fertilization in early stages of breeding program. Details of electrophoretic procedure can be obtained from the second author on request.

Some data were collected from mature F1 generation to describe differences between parental species used for crosses and hybrids. (Tab.1)

Backcross and F2 progeny have been produced and studies on transmission of morphological differences and linkage tests for marker isozyme genes will be conducted in 1990.

References:


Fig. 1 Electrophoretic phenotypes of 5 marker enzymes in three parental species and their hybrids.

A- Capsicum annuum cv. ‘Poznanska Slodka’
B- Capsicum baccatum
C- Capsicum chaocense
B x A – F1 hybrids between B and A
C x A – F1 hybrids between C and A

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>B x A</th>
<th>A</th>
<th>A x C</th>
<th>C</th>
<th>SOD superoxide dismutase</th>
</tr>
</thead>
<tbody>
<tr>
<td>E.C.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>E.C. 1.15.1.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>GOT glutamate oxaloacetate transminase</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>E.C. 2.6.1.1.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PGM phosphogluomutase</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>E.C. 2.7.5.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IDH isocitrate dehydrogenase</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>E.C. 1.1.1.42</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SKDH shikimate dehydrogenase</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>E.C. 1.1.1.25</td>
</tr>
</tbody>
</table>

Table 1. Morphological characteristics of parental species, and their hybrids.

<table>
<thead>
<tr>
<th>Character</th>
<th>N =</th>
<th>B</th>
<th>B x A</th>
<th>A</th>
<th>C x A</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5</td>
<td>15</td>
<td>5</td>
<td>15</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Fruit weight (g)</td>
<td></td>
<td>4.4</td>
<td>12.2</td>
<td>61.4</td>
<td>1.3</td>
<td>0.4</td>
</tr>
<tr>
<td>Fruit length (cm)</td>
<td></td>
<td>5.8</td>
<td>7.6</td>
<td>11.5</td>
<td>2.6</td>
<td>1.2</td>
</tr>
<tr>
<td>Fruit width (cm)</td>
<td></td>
<td>1.3</td>
<td>2.4</td>
<td>5.1</td>
<td>0.9</td>
<td>0.5</td>
</tr>
<tr>
<td>No. of fruits/plant</td>
<td></td>
<td>92.3</td>
<td>26.2</td>
<td>24.7</td>
<td>108.7</td>
<td>72.6</td>
</tr>
<tr>
<td>Yield/plant (g)</td>
<td></td>
<td>217.3</td>
<td>219.5</td>
<td>1447.4</td>
<td>64.9</td>
<td>16.0</td>
</tr>
<tr>
<td>Plant height (cm)</td>
<td></td>
<td>105.8</td>
<td>96.3</td>
<td>66.1</td>
<td>131.5</td>
<td>85.5</td>
</tr>
</tbody>
</table>
ORGANOGENESIS IN CAPSICUM BACCATUM

K. Subhash and K. Sumalini

Department of Botany, Kakati University
Warangal - 506009, (A.PTO India)

The present investigation has been carried out with an aim to produce callus regeneration in Capsicum.

Seeds of Capsicum bapcatum 'II HR 768 ' were surface sterilised for 1 min in 70% alcohol and 5 min in 0.1% HgC 12 and rinsed several times with sterile distilled water and germinated on Murashige and Skoog (MS) medium. The explants (cotyledon, hypocotyl and shoot tip) were excised from 3-4 week old seeding and placed on MS medium with different hormonal concentrations (Table 1).

Green and globular callus was observed in the explants, cotyledon, hypocotyl and shoot tip in the medium supplemented with MS +2 mg/l IAA, 1 mg/l Kn and CW 15% (Fig.1). When the callus was subcultured on the same medium after 25-30 days the proliferation was vigourous with simultaneous shoot and root formation along with scanty callus. The sufficiently developed shoots were excised and cultured on medium with MS + 1.0 mg/l IAA to produce roots (Fig.2). The regenerated plants were transferred to pots with vermiculite and later to the soil.

In order to confirm the callus regeneration histologically, the microtomy standard preparations were made. The callus sections clearly exhibited the dedifferentiated tissues (Fig. 3).
Table 1
Response of the explants cotyledon, hypocotyls and shoot tip to MS medium fortified with different concentrations of auxins and cytokines

<table>
<thead>
<tr>
<th>Hormones (mg/1)</th>
<th>C</th>
<th>R</th>
<th>S</th>
<th>Nature of callus</th>
<th>Colour of callus</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4 D 2 + Kn 1</td>
<td>+++</td>
<td>NR</td>
<td>NR</td>
<td>Friable</td>
<td>Cream</td>
</tr>
<tr>
<td>IAA 2 + Kn 1</td>
<td>+</td>
<td>+++</td>
<td>NR</td>
<td>Compact</td>
<td>White</td>
</tr>
<tr>
<td>NAA 2 + Kn 1</td>
<td>+</td>
<td>+++</td>
<td>NR</td>
<td>Compact</td>
<td>White</td>
</tr>
<tr>
<td>BAP 3 + IAA 1</td>
<td>+</td>
<td>NR</td>
<td>++</td>
<td>Compact</td>
<td>Light green</td>
</tr>
<tr>
<td>IAA 2 + Kn 1 + Cw 15%</td>
<td>++</td>
<td>+</td>
<td>NR</td>
<td>Compact</td>
<td>Dark green</td>
</tr>
</tbody>
</table>

C = Callus; R = Root; S = Shoot; + About 25%; ++ About 50%; +++ Above 50%
STUDY ON SHOOT-TIP MERISTEM CULTURE IN CAPSICUM
Zhenjiu Sun and Ming Wang
Department of Horticulture, North-western Agricultural University,
Yangling, Shaanxi 712100, China

Meristem culture is a very useful technique for rapid mass propagation. Up to now, studies on meristem culture in Capsicum have not been reported in China. The purpose of present study was to establish a realistic technique for the rapid mass propagation via in vitro of shoot-tip meristem in Capsicum.

Accessions of 4 species of Capsicum (C. annuum 'Qiemen', C. frutescens 'No. 310', C. praetermissum 'No. 234' and C. baccatum 'No. 85008') were used. The medium was MS with 3% sucrose and 0.6% agar at PH 5-5.8, supplemented with different kinds and concentrations of hormones. Each treatment was inoculated with 20-24 explant pieces of shoot-tip meristem, cultured under 1,000 lux light for 10 hours/day, the temperature being 26-28°C.

In the initial culture, all the explants of different species grown at the optimal medium for 3 to 4 weeks could develop into shoots with 3 to 4 leaves. The best explants were those excised from 3 weeks seedlings. The plantlets could be directly obtained from the accession 'No. 234' growing at the medium MS supplemented with IAA at the concentration of 0.05 mg/l. The hormone levels required in the medium were different, depending on the accessions. However, the hormone composition and the various auxin and cytokinin combinations had a similar effect on the growing of different shoot-tips. The optimal medium for initial shoot-tip culture was the MS with 1 mg/l BA, 0.5 mg/l IAA and GA, 3% sucrose and 0.6% agar at pH 5.8. The shoot-tip growing at the optimum medium for 3 to 4 weeks formed 2 to 6 axillary buds. The buds developed from shoot-tip were again used as explants for sub-culture. Different multiplication rates were found in the axillary buds excised from different positions. The shoot-tips excised from accessions with high branching potential showed a significantly higher frequency of axillary bud formation than those excised from accessions with poor branching. The medium MS with 0.5 mg/l BA and GA and 0.1 mg/l IAA promoted the axillary bud formation and growing of most accessions. Sub-culture times did not greatly affect the multiplication rate of axillary buds. Supposing a single plantlet growing for 4 weeks have 3.5 axillary buds meanly and the sub-culture is repeated for 11 times, one billion of plantlets could be theoretically obtained from a single shoot-tip explant in one year. Buds were differentiated from the shoot-tip meristem of accession 'Qiemen' growing at the medium MS supplemented with 2.5 mg/l BA and 0.1 mg/l NAA (a), the medium MS with 2 mg/l BA and 0.05 mg/l NAA (b) and the medium MS with 2 mg/l BA and 1 mg/l IAA (c) for 3 to 4 months. The buds generated plantlets when transferred onto the root formation medium. The best differentiation was obtained at (a). Many budlets were generated from each shoot-tip meristem of accession 'No. 310' cultured at medium N with 3 mg/l KT, 0.1 mg/l NAA, 0.5 mg/l IAA and 3% glucose as well as at meAum MS with 2 mg/l BA, 0.5 mg/l NAA, 1 mg/l IAA and 0.5 mg/l GA for 3 months.
A mutant exhibiting 'Multiploid Sporocytes' condition, a genetically controlled meiotic abnormality was isolated, for the first time in M4 generation 40 kR gamma ray treated plants of the variety 'Sindhur. This abnormality was associated with marked phenotypic alteration. The plant was tall (100 cm), low spread (60 cm) displayed fasciation of stems and leaves and small globular fruits which varied in length from 0.5 - 2.5 cm. Internodal growth was suppressed in terminal branches so that all the leaves were aggregated into bunches. Pollen sterility was as high as 75% and fruit and seed set was low.

Meiotic studies revealed the formation of sporogenous tissues into plasmodium like masses that varied in size from anther to anther in which chromosomes were lying in groups. At diakinesis and metaphase I, a maximum grouping of 6 nuclei was observed. In certain cases smaller plasmodial masses containing variable number of chromosomes were even observed. These had definite boundaries and appeared like polyploid cells of large size. The chromosome number varied from 2n = 24-144. The presence of multivalents when more than 24 chromosomes were present at diakinesis and metaphase I is suggestive of the fact that the fusion of cells should have occurred before the process of synapsis. Other divisions were highly irregular with unequal segregation, large number of laggards, division of univalents, fragments, stickiness of chromosomes, formation of polyads and many micronuclei. Inheritance studies revealed no discernable pattern of segregation. The 'Multiploid' sporocytes' condition is obtained probably as a result of suppression of wall formation during pre-meiotic mitosis.

It is concluded in Capsicum, it does not follow monogenic inheritance as in barley (Smith, 1942) and pearlmillet (Manga and Panthulu, 1971) but is as a result of bringing together of certain gene combinations and like other pre-meiotic abnormalities this may also be polygenic in nature.
Increased genetic variability due to induced mutation permit selection for desirable trait. This pap-pr reports induction of pistillate flower mutant in *Capsicum annuum* L. by gamma rays, EMS, alone and in combination.

Soaked seeds (24 hr) of *Capsicum annuum* (‘G4’) were treated with gamma rays (30 kR), 0.1% Ethylmethane sulphonate (EMS) for 24 hr (singly and in combination). The treated seeds were thoroughly washed and sown along with control. M1, plants were harvested separately and sown in M 2 generation on plant progeny basis.

Pistillate flower mutants were isolated in *Capsicum annuum* in a frequency of 2.1, 1.2 and 2.6 following gamma rays, EMS, and gamma rays + EMS respectively. The mutant was identical to the control in morphological features. However in the pistillate flower mutant the number of petals were ten and arranged in two whorls of five each while in control they were only five in a single whorl and the stamens were absent. Gradation of ovule size, ranging from tiny and underdeveloped to round and plumpy ovules were observed in the transverse section of the ovary. The numbers of pistillate flowers produced per plant were more than hundred, nevertheless fruit setting upon manual pollination was very low and a small percent (5%) of seeds were viable. The inheritance of the mutant was studied by performing cross between control (parent) and pistillate mutant. The F1, plants obtained were bisexual. Further investigation and the possibility of exploitation of the mutant for breeding programme will be evaluated.
In Capsicum, experiments for enlarging variability in quantitative characters by applied mutagenesis has been explored (Sadanandam 1981, Subhash and Rajam, 1985). This paper deals with the description of the seedless fruit mutant in Capsicum annuum induced by the combination effect of Gamma Rays and Hydrazine.

Soaked (24 hr) seeds of Capsicum annuum cv 'CA 960; were treated with 25 kR Gamma irradiation followed by 0.1% Hydrazine for 6 hrs. After thorough washing the seeds were sown along with control. M, plants were harvested seperately and sown in M 2 generation on plant progeny basis.

Seedless fruit mutants were isolated from M 2 progeny. Fruits were small and showed seedless nature. Plants were characterized by increased height and woody stems. Around 200 fruits were produced in the mutant as compared to 30 in control (Table 1). Placenta was deformed and pericarp was thick and fleshy. Flowering was significantly delayed. Ascorbic acid content in the mutant was as high as 95 mg/100 g while in the control it was 55. mg/100 g.

The mutant was vegetatively propagated through stem cuttings. The meiotic observations revealed high frequency of chromosomal alterations. Inheritance pattern of mutation in lines segregating for seedless fruit mutant in M 2 generation is set out in Table 2.

The Seedless fruit mutant can be of practical significance because of elevated ascorbic acid content and high yielding.
Table 1. Variation in morphological characters of control and seedless fruit mutant in *Capsicum annuum* cv CA 960.

<table>
<thead>
<tr>
<th>Characters</th>
<th>Control</th>
<th>Mutant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plant height</td>
<td>70.1 ± 80.31</td>
<td>108.24 ± 0.69</td>
</tr>
<tr>
<td>No. of branches</td>
<td>48.7 ± 21.05</td>
<td>64.89 ± 1.09</td>
</tr>
<tr>
<td>Length of leaf (cm) including petiole</td>
<td>5.21 ± 0.31</td>
<td>4.48 ± 0.36</td>
</tr>
<tr>
<td>Breadth of leaf (cm)</td>
<td>2.65 ± 0.29</td>
<td>2.34 ± 0.39</td>
</tr>
<tr>
<td>Days to flower</td>
<td>62.2 ± 10.72</td>
<td>73.84 ± 0.89</td>
</tr>
<tr>
<td>Length of petal (cm)</td>
<td>0.87 ± 0.39</td>
<td>0.91 ± 0.48</td>
</tr>
<tr>
<td>Breadth of petal (cm)</td>
<td>0.47 ± 0.39</td>
<td>0.61 ± 0.48</td>
</tr>
<tr>
<td>Length of style</td>
<td>0.61 ± 0.29</td>
<td>0.64 ± 0.28</td>
</tr>
<tr>
<td>Weight of 100 fruits</td>
<td>92.18 ± 0.85</td>
<td>28.42 ± 0.72</td>
</tr>
</tbody>
</table>

A Mean ± S.E.

Table 2. Inheritance pattern of the mutation in lines segregating for seedless fruit mutant.

<table>
<thead>
<tr>
<th>No. of fruits</th>
<th>Phenotype</th>
<th>Observed</th>
<th>Expected (3:1)</th>
<th>$x^2$</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Control</td>
<td>180</td>
<td>168</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mutant</td>
<td>44</td>
<td>56</td>
<td>3.42</td>
<td>&lt; 3.84</td>
</tr>
<tr>
<td></td>
<td></td>
<td>224</td>
<td>224</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
RESISTANCE OF ANDROGENETIC AUTODIPLOID LINES OF PEPPER TO PHYTOPHTHORA CAPSICI AND TOBACCO MOSAIC VIRUS UNDER HIGH TEMPERATURE.

A.M. Dauboze, A. Palloix and E. Pochard. INRA, Station d'Amélioration des Plantes Maralchères, B.P. 94. 84143 Montfavet Cedex - FRANCE

The Mexican pepper line 1CM 3341 (GUERRERO-MORENO and LABORDE, 1980) is resistant to a very aggressive strain of Phytophthora capsici (S 197) and to Tobacco Mosaic Virus, pathotype 0. The main original trait of TM 334, is that these resistances remain stable in a large range of temperature, even when temperature is maintained above 3O°C during several days. Whereas under such conditions, the resistances of the other-genitors are broken down (POCHARD et al, 1983; POCHARD and DAUBEZE, 1989).

A genetic analysis of the resistances of ‘CM 3341 was performed using doubled haploid lines obtained by in vitro androgenesis (DH lines). A first set including 30 DH lines (HD702) was obtained from the F1 hybrid ('CM334' X 'YOLO WONDER'). The second set included 38 DH lines (HD591) obtained from the F1 hybrid (TAT' X ICM334% 'VAT' is a susceptible to TMV, but is partially resistant to P.capsici.

The two sets of DH lines were tested for resistance to P.capsic at 22°C and 32°C. The stem inoculation procedure was performed according to POCHARD and DAUBEZE, 1980. In this test, the speed of necrosis progression (fungal growth) decreases to a minimum value between the 10t and the 17”2 day after inoculation, when resistance is induced. This minimum speed of necrosis (Vm) is considered as a measure of the resistance level of the DH lines (PALLOIX, 1986). Considering the 2 sets of DH lines, high correlations were observed between Vm at 22°C and Vm at 32°C (table 1, fig.D. This indicated that most of the resistance genes from ’CM334’ were efficient against P.capsici whatever the temperature.

The two sets of DH lines were also tested for resistance to TMV(O) at 22°C and 32°C. For the HD591 lines (the parental line 'VAT' is TMV susceptible) we observed a resistant/susceptible ratio close to 1/1 (table 2), indicating that resistance of 'CM3341 to TMV is controlled by one single gene. More over, the lines displaying resistance at 22°C were also resistant at 32°C and reciprocally: i.e. one single locus in ICM334' controls resistance to TMV(O) and stability under high temperature. In the progeny HD702 (the parental line 'YOLO WONDER' bears the L 'allele and is TMV(O) resistant), no line displayed susceptibility to TMV at 22°C, suggesting that the gene from 'CM334' is allelic to L'. Allelism tests confirmed this result : ICM3341 bears a gene of resis ' tance to T- that is located at the L1 locus, it shows the same specificity toward TMV pathotypes as L1, but it is efficient under high temperature. We named this allele L1.

In the figure 1, the DH lines resistant to TMV at T2°C were figured by a these lines did not seem to be resistant to P.capsic, indicating that LIc is not genetically or functionally linked to resistance to P.capsici.

This analysis showed that the expression under high temperature of the resistances from 1CM334' seems directly controlled by the resistance genes itselfs. No independant modifier genes acting on both resistances to TMV and P.capsici were detected. However, DH lines with interesting gene associations will be introduced in our programs in order to breed varieties with an improved resistance under unfavorable environments.


<table>
<thead>
<tr>
<th></th>
<th>Corr. Coef</th>
<th>t_student</th>
<th>Prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>HD 702</td>
<td>0.808</td>
<td>7.26</td>
<td>&lt;1%</td>
</tr>
<tr>
<td>HD 591</td>
<td>0.624</td>
<td>4.76</td>
<td>&lt;1%</td>
</tr>
</tbody>
</table>

Table 1. : Correlation coefficients between resistance to P. capsici at 22°C and resistance to P. capsici at 32°C for the 2 sets of DH lines.

<table>
<thead>
<tr>
<th>TMV(O)</th>
<th>HD 702</th>
<th>HD 591</th>
<th>‘CM 334’</th>
<th>‘YOLO W.’</th>
<th>‘VAT’</th>
</tr>
</thead>
<tbody>
<tr>
<td>22°C</td>
<td>30R – 0S</td>
<td>20R – 18S</td>
<td>R(L¹C)</td>
<td>R(L¹)</td>
<td>S(L¹)</td>
</tr>
<tr>
<td>32°C</td>
<td>14R – 16S</td>
<td>20R – 18S</td>
<td>R(L¹C)</td>
<td>R(L¹)</td>
<td>S(L¹)</td>
</tr>
</tbody>
</table>

Table 2 : Number of DH lines resistant (R) and susceptible (S) to TMV(O) at 22°C and at 32°C
THE APPLICATION OF THE ToMV -Ob STRAIN IN THE TMV L4 RESISTANCE BREEDING

Csillery, G. and J. Rusko
Research Institute for Vegetable Crops, Station Budapest.
Budapest, P.O.Box 95. H-1775, HUNGARY

The P 1.2. pathotype of TMV was isolated first time in Hungary in 1978. It is a special strain and we named ToMV- Ob. Csillery and Rusko (1900), Tobids et al. (1982). Csillery et al.(1981). The symptoms of the infected leaf of susceptible L+ and the resistant L1 and L2 pepper plants are typical yellow/green mosaic, the fruits are deformed. Later we isolated from the L1 cv. Fehdbzbn the same pathotype (P 1.2.) of TMV, but the serotypes were different (SL, U1, P 11). Tobios and Csillery (1983). It is very interesting that the ToMV –Ob strain never spread in Hungary and we could isolate only from cv. Soroksari hajtato L+.

The diagnosis of ToMV -Ob is-very easy and therefore we are using in our L3 resistant breeding program. 4

When we started the work with L4 resistance gene, received from I.W. Boukema, in C. chacoense P.I. 260 429'b-background, we received the P 8 , P 11 and P14 virus strain from Th. B. Rast too.

In our TMV resistance breeding practice we are-using the hypocotyl test and the excised leaf test. It seems that the P 14 strain is not suitable for these methods and therefore we tried to use our ToMV -Ob strain. In the comparative experiments the lesions appeared later and the number of lesion were fewer if we use the P14 strain. (Table 1.) The quick result (appearance day) is very important if we apply the excised leaf test, because the leaves became rotten 5-6 days after the cutting.

If we use the ToMV -Ob strain (and not the P14 strain) in the L4 resistant breeding, in this case it is very important that the source of susceptible parents does not contain the L3 gene.

Our experience suggest from the beginning of work that the L4 resistant source is not homazygote. In the F2 and the BCF2 generations we found some plants having darker and smaller lesion that the others. Pochard’s opinion was the same in 1985. “Heterozygous for the unusual genes” (personal communication).

References
CSILLERY,G. -J. RUSKO , 1980., The control of a new Tobamovirus strain by a resistance linked to anthocyanin deficiency in pepper C. annuum L.
IVth Eucarpia Capsicum Meeting, Wageningen, 14-16 October, 40-43.
Table 1. Symptoms of ToMV –Ob and TMV P14 infected L3 and L4 resistant pepper cotyledon and excised leaf

<table>
<thead>
<tr>
<th>Characters of lesion</th>
<th>Type of test</th>
<th>L&lt;sup&gt;3&lt;/sup&gt; res.</th>
<th>L&lt;sup&gt;4&lt;/sup&gt; res.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Ob strain</td>
<td>Ob strain</td>
</tr>
<tr>
<td>Appearance in hours (optimal size and colour of lesion)</td>
<td>Cotyledon</td>
<td>72</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td>Excised leaf</td>
<td>72</td>
<td>84</td>
</tr>
<tr>
<td>Number of lesion piece/cm&lt;sup&gt;2&lt;/sup&gt;</td>
<td>Cotyledon</td>
<td>5 - 6</td>
<td>3 - 4</td>
</tr>
<tr>
<td></td>
<td>Excised leaf</td>
<td>8 - 12</td>
<td>7 - 8</td>
</tr>
<tr>
<td>Diameter of lesion mm</td>
<td>Cotyledon</td>
<td>1.0 - 2.0</td>
<td>3.0 - 3.5</td>
</tr>
<tr>
<td></td>
<td>Excised leaf</td>
<td>1.0 - 1.5</td>
<td>2.0 - 2.5</td>
</tr>
<tr>
<td>Color of lesion</td>
<td>Cotyledon</td>
<td>Dark brown</td>
<td>Light brown</td>
</tr>
<tr>
<td></td>
<td>Excised leaf</td>
<td>Dark brown</td>
<td>Light brown</td>
</tr>
<tr>
<td>Border of lesion</td>
<td>Cotyledon</td>
<td>Merked</td>
<td>Unmarked sinnous</td>
</tr>
<tr>
<td></td>
<td>Excised leaf</td>
<td>Marked</td>
<td>Unmarked sinnous</td>
</tr>
</tbody>
</table>
The CMV is the most dangerous virus pathogene in the open field in Hungary. The majority of the Hungarian varieties are CMV susceptible. The cv. Táltos (waxy fruit type) has one of the best CMV tolerances. The source of tolerance is originated from the-French variety Antibois. The level of this tolerance is not sufficient in Hungary and therefore we started to work with the Indian Perennial line received from J. Singh. For the CMV tolerance selection of Perennial hybrids we used the local Hungarian CMV strains and the CMV Fulton strain (received from E. Pochard). We published the first result of infection in 1980 (Rusko and Csillery). In the first pBriod we used the Pochard's method. He proposed the infection in 6-8 leaves stage. In the new publications Pochard and Daubéze (1989) inoculated the seedlings in cotyledon phase with different types of CMV (Fulton, I - 17F, Ter 75, 34 F). The CMV tolerance is a polygenic recessive character and therefore we have to analyse more and more segregating plants. In this experiment the infection was made with CMV Fulton strain in the cotyledon stage, 4-5 days after the germination. The ledons were visible 4-5 days after the infection. The size of cotyledon is not so big; therefore the maximum number of lesions is 4-5 lesions per cotyledon (on the susceptible types). On the cotyledon of original Perennial line we could not cause lesions. Because in the number of lesions the difference is not so high between the susceptible and tolerant plants, this method is not regarded perfect. Therefore in this experiment in the 6th day we eliminated the seedlings with lesions and we transplanted the seedlings without lesion. On the 6-8 leaves stage we infected these plants with CMV Fulton strain second time, and the lesions appeared after 6-7 days. In each repetition some susceptible plants were transplanted for control and it seems that the efficiency of pre-selection is 70-80 %. In the most part of pre-selected plants the second infection caused few lesions. In consequence of polygenic character sometimes we harvest lots of single plants, but for the great number of items it is very difficult to analyse the level of resistance on the pots in 6-8 leaves stage or on the field. Therefore we made this pre-selection method in winter season in climate boxes and we sow the best lines to the field experiment.

Several colleagues interested in CMV resistance suggested recently that some of their accessions might be of value in terms of CMV resistance. Hence different lines were sent from the USA, Yugoslavia and France.

The seedlings were grown in the greenhouse and routinely mechanically inoculated three times starting at the first true leaf stage. Within the tested material (Table-1) resistance was not found, however significant differences in response to the virus were demonstrated among the various lines.

Several lines showed either Susceptibility or segregation to tolerance while all the material from E. Pochard demonstrated uniform pattern of tolerance. In Pochard's material clear mosaic symptoms were obtained but a tendency of recovery and continuous growth was demonstrated. Such level of tolerance is used in our breeding program in Israel. In addition one should keep in mind that the tested material was not yet tested under natural field infection.
Table 1: Reaction of *Capsicum annuum* L. germplasm to mechanical inoculation with CMV.

<table>
<thead>
<tr>
<th>Accessions</th>
<th>Tolerant</th>
<th>Susceptible</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>1986</td>
<td>0</td>
<td>15</td>
<td>B.W. Bosland</td>
</tr>
<tr>
<td>1987</td>
<td>0</td>
<td>7</td>
<td>&quot;</td>
</tr>
<tr>
<td>Yellow Jalopen</td>
<td></td>
<td></td>
<td>B. Villalon</td>
</tr>
<tr>
<td>Sweet Chile Long</td>
<td>0</td>
<td>17</td>
<td>&quot;</td>
</tr>
<tr>
<td>Hidalgo Serrano</td>
<td>0</td>
<td>34</td>
<td>&quot;</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>17</td>
<td>N. Marinkovic</td>
</tr>
<tr>
<td>28</td>
<td>0</td>
<td>17</td>
<td>&quot;</td>
</tr>
<tr>
<td>30</td>
<td>0</td>
<td>19</td>
<td>&quot;</td>
</tr>
<tr>
<td>86</td>
<td>0</td>
<td>17</td>
<td>&quot;</td>
</tr>
<tr>
<td>87</td>
<td>2</td>
<td>15</td>
<td>&quot;</td>
</tr>
<tr>
<td>88</td>
<td>1</td>
<td>16</td>
<td>&quot;</td>
</tr>
<tr>
<td>89</td>
<td>1</td>
<td>16</td>
<td>&quot;</td>
</tr>
<tr>
<td>65</td>
<td>0</td>
<td>17</td>
<td>&quot;</td>
</tr>
<tr>
<td>66</td>
<td>0</td>
<td>11</td>
<td>&quot;</td>
</tr>
<tr>
<td>67</td>
<td>2</td>
<td>15</td>
<td>&quot;</td>
</tr>
<tr>
<td>HD 210</td>
<td>9</td>
<td>0</td>
<td>E. Pochard</td>
</tr>
<tr>
<td>HD 230</td>
<td>11</td>
<td>0</td>
<td>&quot;</td>
</tr>
<tr>
<td>HD 248</td>
<td>9</td>
<td>0</td>
<td>&quot;</td>
</tr>
<tr>
<td>HD 249</td>
<td>16</td>
<td>0</td>
<td>&quot;</td>
</tr>
<tr>
<td>HD 260</td>
<td>11</td>
<td>0</td>
<td>&quot;</td>
</tr>
<tr>
<td>DM 815</td>
<td>15</td>
<td>0</td>
<td>&quot;</td>
</tr>
</tbody>
</table>

*Capsicum Newsletter, 8-9 (1990), -55.*
A preliminary experiment was conducted to evaluate components of resistance to X. campestris pv. vesicatoria in inoculated pepper leaves. The host plants evaluated were S3-derived lines from CNPH 191 (susceptible), CNPH 722 (susceptible) and CNPH 703 (resistant). CNPH 191 and CNPH 722 were previously observed to differ in lesion development. Lesion expansion was often greater in CNPH 191 than in CNPH 722; whereas, lesion number was often greater in CNPH 722 than in CNPH 191. CNPH 703 has group nonspecific resistance to the bacterial spot pathogen. The objectives of the experiment were to compare lesion number and lesion expansion as quantitative components of resistance to bacterial infection, and to determine which component of resistance had the most practical application for disease screening.

Seeds were planted on 11 July 1987 and seedlings were transplanted into plastic pots on 31 July 1987 in a randomized-complete block design, with four blocks as replications. Each block was situated on a different greenhouse bench. For each of the three-genotype treatments, there were five plants per block. Four expanded leaves per plant and four subsamples per leaf were inoculated by leaf infiltration on 25 August 1987 with a bacterial suspension of approximately 5 x 10^5 cfu ml^-1 of X. campestris pv. vesicatoria Group 2 (sensu Reifschneider et al., 1985). A fifth leaf of each plant was inoculated with sterile distilled water as a control. The third, fourth, fifth and sixth leaves were detached at intervals of 6, 10, 15 and 20 days after inoculation, respectively. One plant of each genotype from a different block was sacrificed from the experimental design at each interval to judge whether leaf age was an important source of treatment variation for lesion development. Lesion number cm^-2 and average lesion diameter (mm) were determined by observation under a stereo microscope. A cardboard template was used to delimit 1 cm^2 of inoculated leaf tissue, and a slide micrometer was used to measure lesion diameter. Means of the four blocks at each time interval are presented in Fig. 1. Conversion of the components lesion number and lesion diameter gave an estimate of total lesion area [lesion area = n(lesion diameter+2)2 (lesion number)].

Fifteen (lays after inoculation (DAT) was recommended as an appropriate time to evaluate resistance components. After fifteen DAI, lesions began to coalesce in the susceptible checks and lesion numbers were less accurately counted. Differences among genotypes were noticed by 10 DAI, but the differences among resistant and susceptible genotypes were more clearly detected at ±15 DAI. No lesions appeared on control leaves and components of resistance were not influenced by differences in leaf age of plants inoculated at 45 days after sowing. Although two susceptible hosts differed slightly for the components lesion number and lesion diameter, both genotypes were equally susceptible on the basis of total lesion area. An estimate of total lesion area may be a useful way of combining the two components of resistance.

In other studies, actual gains due to selection were 51% when selection was based on total lesion area, compared to 22% and 3% for lesion diameter and lesion number, respectively.

References:

* former graduate research assistant, current address: AVRDC, P.O. Box 42, Shanhua, Tainan 71499, Taiwan - R.O.C.
Fig 1. Components of resistance; lesion number (A), average lesion diameter (B), and total lesion area (C), to Xanthomonas campestris pv. Vesicatoria in leaves (cm-2) of Capsicum annum L. leaves were inoculated by leaf infiltration with a low concentration (5 x 10^3 colony forming units ml-1) of the bacterium. Host plants CNPH 191 (■), CNPH 722 (▲), and CNPH 703 (□). Vertical bars represent ± SE (n = 4).

Capsicum Newsletter, 8-9 (1990), 56-57.
EFFECT OF STYLAR OPENING ON THE OCCURRENCE OF INTERNAL MOLD (ALTERNARIA SP.) IN TWO PEPPER CULTIVARS.


Previous reports have documented internal mold (Alternaria sp.) invasion of pepper pods via stigma and style (Halfon-Meiri and Rilski, 1983), injuries (Bruton et al., 1989) or stylar opening (Dempsey and Cochran, 1965; Zatyko, 1989). According to our own results, internal mold was associated to the presence of stylar opening in the mature fruits of two open grown cultivars (Table 1). Nevertheless, absence of stylar opening did not always mean lack of Alternaria infections, particularly in 1988 when 32% of fruits with no stylar opening were infected. The summer of that year was stormy. High relative humidity has been pointed out as the cause of increasing Alternaria conidial densities (Bruton et al., 1989).

Under these circumstances, blossom end and subsequent placenta infections could take place via the remaining stigma and style (Halfon-Meiri and Rylski, 1983). In a few cases where pods with no apparent stylar opening resulted infected at placenta level without corresponding blossom end infection, either fruitworm or sunscald injuries were checked as the cause for fungal invasion.

Zatyko (1989) has suggested selecting for great fruit size, particularly great "blossom end - placenta" distance, as a mean of avoiding Alternaria sp. infection in tomato-shaped pepper varieties. That suggestion cannot be taken as a general rule in pepper breeding because according to our own results, quite similar damage caused by Alternaria sp. was obtained on short (tomato) as well as on long (blunt) fruits of cv. Infantes (Table 2).

Dempsey and Cochram (1965) have proposed to select pointed fruits with no stylar opening instead of blunt-shaped ones to avoid internal mold on pimiento pepper varieties. To test this possibility, the association between fruit shape and internal mold was also studied in 1989. Blunt and tomato-shaped fruits were found to have a higher incidence of internal mold than pointed fruits on both cultivars (Table 2). Therefore, blunt, off-typed fruits of cv. 'Piquillo' should be rejected in selection programmes. The case of cv. 'Infantes' is troublesome since the blunt shaped fruits are considered as the standard type from a marketable point of view. Selection for stylar closure associated to blunt shape - was started in 1988 with no response to selection in 1989. In the case of blunt shaped varieties and probably in tomato shaped ones, breeding for real resistance to Alternaria sp. instead of avoidance (stylar closure-pointed fruit shape) seems to be the correct response.
Table 1. Percentage of pepper mature pods showing internal mold (Alternaria sp.) when stylar opening was or was not present

<table>
<thead>
<tr>
<th>Cultivar (Pod weight)</th>
<th>Stylar opening</th>
<th>Year</th>
<th>1988</th>
<th>1989</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infantes (225 g)</td>
<td>Present</td>
<td></td>
<td>92</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>absent</td>
<td></td>
<td>32</td>
<td>4</td>
</tr>
<tr>
<td>Piquillo (45 g)</td>
<td>Present</td>
<td></td>
<td>-</td>
<td>82</td>
</tr>
<tr>
<td></td>
<td>absent</td>
<td></td>
<td>-</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 2. Percentage of pepper mature pods showing internal mold (Alternaria sp.) by shape

<table>
<thead>
<tr>
<th>Cultivar</th>
<th>Pod shape</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infantes</td>
<td>Pointed blung (standard)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>tomato</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>Pointed (standard)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>blunt (off-type)</td>
<td>82</td>
</tr>
<tr>
<td>Piquillo</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LITERATURE
Bruton, B.D., Chandler, L.D., Miller, M.E., 1989, Relationship between pepper weevil and internal mold of sweet pepper, Plant Disease, 73, 170-173.


STUDIES ON DISEASE RESISTANCE OF INDUCED TETRAPLOIDS OF CAPSICUM ANNUUM L.

I. Harini, N. Lakshmi and N.S. Prakash
Department of Botany, Nagarjuna University,
Nagarjunanagar-522 510, A.P., India.

Of the various diseases reported on the genus Capsicum, leaf spot disease caused by Cercospora sps. was considered to be most important causing severe defoliation.

While making cytogenetical studies on induced tetraploids of Capsicum it was observed that the colchiploids when compared to diploids seem to be quite healthy and less prone to Cercospora leaf spot disease. So, in order to test the disease resistance of tetraploids to Cercospora leaf spot, preliminary studies were made on the pathogen employing diploids and tetraploids as host plants.

Data revealed that the percentage of spore germination and germ tube length were significantly reduced or, leaf surface, leaf exudates and leaf. Extracts of tetraploids when compared to those of the diploids. Anatomical studies revealed that there was a significant reduction in stomatal frequency when compared to diploid with a concomittant increase in its size. The total phenolic content increased in leaves from diploids (susceptible) to tetraploids (resistant).

It can be concluded that the disease resistance exhibited by tetraploids against leaf spot disease of Cercospora may be attributed to altered morphology (increased leaf thickness and low frequency of stomata) and high phenolic Content.

Since the polyploids are apparently disease free and offer some resistance to Cercospora leaf spot disease, they may form an important germplasm source for the synthesis of disease resistant varieties of Capsicum if further studies are continued in this direction.
PROTECT CHILLIES CROP FROM PHYTOPHTHORA

Dr. A. Hussain, M.N. Ahmad, A.S. Akhtar

A- Prior to the year 1986, the Phytophthora disease was not known in Pakistan, but during the crop season 1986 on account of excessive and prolonged rains during the months of April and May, the disease was observed for the first time in chillies growing areas of the country. The growers due faced heavy losses to attack of the disease and failure of the chillies crop. The production of chillies has been reduced to 68,000 tonnes during 1988-89 as compares to the normal production of 92,000 tonnes and the Government had to import chillies from abroad.

B- Symptoms

• All plant parts; seedlings, stem, branches and fruit are affected.
• The nursery plants after emergence are killed in the nursery beds.
• On the adult plant, symptoms of it may develop on the stem on the soil level and lesions may extend up two inches above the soil level and the plants may wilt and die.
• The branches are also affected and brownish to dark brown lesions appear.
• The disease also attacks the fruit as well. The invaded fruit tissue become dark green and water soak. Under high humidity white mold and fungus spores develop on the affected area and the fruit may rot in few days. Such fruit dry out rapidly, shrink and wrinkle but remain attached with the plants.
• Epiphytotics are encouraged by rain and warm conditions with the results that the entire field is damaged

C. Control Measure

Farmers are being recommended proper control measures of the disease lice.

• Use of healthy seed obtained from healthy plants.
• Treatment of seed with Captan or Ridomil M.Z. @ 2.0 grams per kg of seed.
• Treatment of nursery plants with 0.1% solution of Ridomil M.Z. before planting.
• Planting on the top of the ridges.
• Spraying the crop in the field (if disease appears) with 0.2% solution of Ridomil M.Z.
• Hoeing and earthing up should also be done.
• Rotation should be followed.
• Excessive irrigation and flooding be avoided.

Ayub Agricultural Research Institute, Faisalabad.
SEARCH FOR VERTICILLIUM DAHLIAE RESISTANCE IN CAPSICUM SP.

R. Gil Ortega, C. Palazón Espafiol and J. Barriuso Vargas.
Agricultural Research Service (S.I.A. - D.G.A.)
Apartado 727, 50080 Zaragoza (Spain)

Several Capsicum accessions were screened for Verticillium dahliae resistance in three experiments: two in the field, in highly V. dahliae - infected plots, and one by artificial inoculation in a climatized greenhouse (24 - 16°C). The accessions belong to C. annuum (121 accessions) C. chinense (9) C. frutescens (7), C. baccatum (14), C. pubescens (3), C. chacoense (4), C. galapagoense (2), C. praetermissum (6) and C. eximium (3) (Table 1).

Five months after planting in the field or two and a half months after artificial inoculation by root immersion for 3 min. in a 10 con/ml suspension, plants were evaluated for Verticillium symptoms using a 0-4 scale, where 0 = no symptoms, 1 = partial wilting, 2 = general wilting, 3 = above symptoms, plus loss of leaves or stunting, 4 = death. The cultivars 'Riguel' and 'Podarok Moldovy' were included respectively as a susceptible and a resistant control in each of the three screening tests. The sum of the evaluations of all the plants of each accession, usually ten, divided by the number of plants, was considered the disease index of each accession in each of the screening tests. In order to simplify data presentation, when an accession was included in more than one test, the highest of the disease indexes was considered as the disease index for such accession. After that, all the accessions were classified by the disease index in four groups (Table 1).

In C. annuum, only the accession C. annuum var. minimum 'G9' (disease index 1.1 -2 ) has shown better response than C. annuum resistant controls (disease index 2.1-3). In other species several accessions were detected with disease index 0-1. In C. chinense other chinense, 'G303/AC2139' and 'Miscucho' stood out. In C. frutescens, the best two accessions proved to be 'Capsicum sp. Colombia' (Aleksic et al., 1976) and 'G283/AC1249'. Saccardo and Sree Ramulu (1977) resistance to V. dahliae in C. chinense and C. frutescens, while other authors did not detect resistance accessions in these species (Iglesias-Olivas et al., 1987, 1987; Woolliams et al., 1962). In C. pubescens, two resistant accessions were detected 'Rocoto Rojo P-7' and 'C50' though these data should be considered cautiously as they come from a single experiment, moreover a field one, where the infection level was lower and not so uniform than under artificial inoculation. Satisfactory resistance in C. pubescens has not been usually found by other authors (Iglesias-Olivas et al., 1987, Marinkovic et al., 1989). The best five C. baccatum accessions were 'Escabeche P5' (Cl31), 'Aji naranja P68', '3-4', 'Escabeche' and 'Escabeche P8'. 'Escabeche P5' was also the best one among all the tested accessions. In C. baccatum no resistance was found by Saccardo and Sree Ramulu (7977), Iglesias-Olivas et al., (1987) or Woolliams et al., (1962), but recently, Marinkovic et al., (1989) have also reported a high level of resistance in Ifs-c---heche PS', what would confirm the interest of 'Escabeche', the main cultivar of C. baccatum var. pendulum, as a source of resistance to V. dahliae.

C. eximium, C. chacoense, C. galapagoense and C. praetermissum accessions screened in our works did not solicit interest as V. dahliae resistance sources in comparison-to the group of te above cited five cultivated species. Saccardo and Sree Ramulu (777), Iglesias-Olivas et al. (1987) and Marinkovic et al., (1989) have obtained similar performances with these wild species.
Table 1. Number of Capsicum accessions screened for resistance to V. dahliae and classified by the disease index.

<table>
<thead>
<tr>
<th>Species</th>
<th>0-1</th>
<th>1.1-2</th>
<th>2.1-3</th>
<th>3.1-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. annuum</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>117</td>
</tr>
<tr>
<td>C. chinense</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>C. frutescens</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>C. baccatum</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>C. pubescens</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C. chacoense</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>C. galapagoense</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>C. praetermissum</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>C. eximium</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

LITERATURE


Saccardo, F., Sree Ramulu, K.S., 1977, *Mutagenesis and cross breeding in Capsicum for disease resistance against Verticillium dahliae*, 3rd Eucarpia Capsicum meeting, INRA-Montfavet (France), 161-162. -

BIPOLALRIS SPICIFERA - A NEW SEED-ROTTING PATHOGENE OF CAPSICUM ANNUUM.

Endre I. SIMY

Enterprise for 113xtension and Research in Fruit Growing and Ornamentals, Dept. Ornamentanis - 11-1223 Budanest, -Park u. 2+

Sporulation of Bipolaris spicifera /Bain./ Subram. Was observed on rotted seeds of Capsicum annuum as a velvety, blackish mold. Pure cultures were made, and the fungus was identified by culture characters and microscopic observations according to Domsch et al. /1980/. The pure cultures were maintained on potato dextrose agar medium. Colonies were reaching 3-4,5 cm diameters in five days at 22 0 C' and were brown to blackish. The fungus sporulated well in the cultures. Its conidia were 24-38,4 x 12-19,2 micrometers, mostly three-distoseptate, and germinated bipolar in water. However Chidambaram et al. /1973/ reported few other Bipolaris species occurring on seeds of C. annuum, we have not any other information on occurrence of B. spicifera on this host substrate. The other identified, Bi2olaris was the B. sorokiana /Sacc./ Shoem in our trials. Both were sporadically occurring.


Soil salinity is nowadays an important agriculture problem hence the acknowledge of plant resistance to this trouble represents a goal for many researchers all over the world.

One of the employed methods in this study is to observe the rate of germination in saline substrate.

In our case the effect of soil salinity on seed germination of two breeded Cuban sweet pepper varieties was studied. Six-soil salinity levels were tried (from 0 to 0,5 % of NaCl), temperature was kept at $25 \pm 3 \degree C$ and four repetitions were made.

Statistics showed significant differences at 0,1 % for soil salinity level effect on seed germination, as well as on varieties.

Seed germination decrease when soil salinity level increased. It was only 4 % in I Espadol Liliana variety when going from 0 to 0,5 %, so it is an outstanding material and it is important to follow the york with it; decrease was 24,5 % in ‘SC 81’ pepper variety.
CRYO-PRESERVATION OF PEPPER AND EGGPLANT SEEDS

Lanteri S., Belletti P., Nassi M.O. and Quagliotti L.
Institute of Plant Breeding and Seed Production, University of Turin
Via P. Giuria 15, 10126 Turin, Italy

Liquid nitrogen (LN$_2$) storage is known as a good system for germplasm conservation: in seeds stored at -196°C all sources of metabolic deterioration are greatly reduced, thus providing a very prolonged preservation. Apart from the problems related to the survival-time of seeds stored in this condition, important factors of the seeds cryo-preservation are the cooling and rewarming rate of the seeds to and from -1.6°C, the number of complete cycles of cooling and rewarming to which the seeds could be subjected and the moisture content of the seeds.

In order to verify possible damages caused by repeated cooling and rewarming cycles to the viability of seeds, the following experiment was carried out: samples of seeds of pepper (cv 'Corno di toro rosso') and eggplant (cv 'Prospera') were subjected, within a few months, up to 50 cycles of cooling and rewarming. For every species, seeds with three different moisture contents were examined. On the basis of a previous research (Belletti et al., 1990), a rate of cooling-rewarming called "quick" was chosen: the seeds were directly transferred from room temperature to -196°C and warmed back at 30°C for 1 hour soon after removing from LN$_2$. The response of the seeds was evaluated by germination tests according to ISTA (1985) methods: moreover the frequency of abnormal seedlings (considered as a symptom of loss of vigour of the seed) and the mean germination time were recorded.

Seeds of pepper subjected up to 50 cycles of cooling and rewarming proved the loss of their viability in a very small amount (fig. 1). The moisture content of seeds subjected to a short period of storage did not affect the seed viability. However, it is likely that the source and the vigour of the sample under examination play an important role in the response to the treatments.

The behaviour of eggplant seeds was different. Seeds with the highest moisture content (w.c. 11.4%) showed a decrease of their viability already after 10 cycles (fig. 2).

References
Fig. 1 – Percent of Germination (P.G.) of pepper seeds with three moisture contents (A = 4.9, B = 6.3% and C = 10.4%) subjected to cycles of cooling and rewarming.

Figure 2 – Percent of Germination (P.G.) of eggplant seeds with three moisture contents (A = 4.8%, B = 6.3% and C = 11.4%) subjected to cycles of cooling and rewarming.
STUDIES ON COHERITABILITY FOR YIELD COMPONENTS IN EGGPLANT

E- Vadivel and J.R. Rannan Bapu
Vegetable Research Station, Palur-607 113.
Tamil Nadu Agricultural University - INDIA.

Coheritability is a general genetic parameter which indicates the changes in pairs of characters during selection process. Coheritability is the ratio between genotypic covariance and phenotypic covariance which refers to the coheritance of different character pairs and indicates the genetic progress which would result from the joint selection of characters.

Nineteen cultivars of eggplant collected from different parts of the country were planted in a randomized block design with two replicates during kharif 1988. The coheritability values for different pairs of characters were calculated and presented in the table. The coheritability estimates of days of flowering with plant height, plant height with number of branches per plant, fruit number, fruit weight and fruit yield, number of branches per plant with fruit length and fruit yield, number of fruits per plant with fruit yield, fruit weight with fruit length and yield and fruit and length with fruit yield were found to be isodirectional while in all the other traits there was an opposite relationship.

Fruit yield showed higher coheritability with number of fruits per plant and number of branches. This indicated that good progress in yield improvement could be expected by selection for these characters in eggplant.
Table: Coheritability values for different characters in eggplant.

<table>
<thead>
<tr>
<th>Character</th>
<th>Plant height</th>
<th>Number of branches per plant</th>
<th>Number of fruit per plant</th>
<th>Fruit Weight</th>
<th>Fruit Length</th>
<th>Fruit Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>Days to flower</td>
<td>0.184</td>
<td>-0.046</td>
<td>-0.223</td>
<td>-0.033</td>
<td>-0.076</td>
<td>-0.362</td>
</tr>
<tr>
<td>Plant height</td>
<td>-</td>
<td>0.147</td>
<td>0.238</td>
<td>0.163</td>
<td>-0.342</td>
<td>0.043</td>
</tr>
<tr>
<td>Number of branches per plant</td>
<td>-</td>
<td>-</td>
<td>0.489</td>
<td>-0.097</td>
<td>0.243</td>
<td>0.398</td>
</tr>
<tr>
<td>Number of fruits per plant</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-0.324</td>
<td>-0.127</td>
<td>0.694</td>
</tr>
<tr>
<td>Fruit Weight</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.093</td>
<td>0.088</td>
</tr>
<tr>
<td>Fruit Length</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.2006</td>
</tr>
</tbody>
</table>
PATH ANALYSIS OF YIELD COMPONENTS IN EGGPLANT

E. Vadivei and J.R. Kannan Bapu

Vegetable Research Station, Palur-607 113.
Tamil Nadu Agricultural University, INDIA.

Path analysis studies provide precise information on direct and indirect effects of yield components on yield. The direct and indirect contributions of different traits on fruit yield were studies in F3 progenies of eggplant cross 'Ep27’X’Ep47’ as per method suggested by Dewey and Lu (1959).

Number of fruits per plant had the largest direct yield (Table). However, its effect through fruit length and weight was negative. Days to flower registered negative direct effect and other traits recorded negative effects via this trait indicated the least importance of this trait. The path analysis suggests the importance, in order of number of fruits per plant, number of branches per plant, plant height and fruit weight on fruit yield in eggplant.

Literature:
Table: Path analysis showing direct and indirect effects of yield components on fruit yield.

<table>
<thead>
<tr>
<th>Traits</th>
<th>Days to flower</th>
<th>Plant height</th>
<th>Number of branches per plant</th>
<th>Number of fruits per plant</th>
<th>Fruit length</th>
<th>Fruit weight</th>
<th>Correlation with fruit yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>Days to flower</td>
<td>-0.272</td>
<td>-0.056</td>
<td>0.014</td>
<td>-0.026</td>
<td>0.024</td>
<td>0.019</td>
<td>-0.297</td>
</tr>
<tr>
<td>Plant height</td>
<td>-0.241</td>
<td>0.394</td>
<td>-0.219</td>
<td>-0.298</td>
<td>-0.060</td>
<td>0.018</td>
<td>0.406</td>
</tr>
<tr>
<td>Number of branches per plant</td>
<td>0.013</td>
<td>0.016</td>
<td>0.488</td>
<td>0.009</td>
<td>-0.064</td>
<td>-0.072</td>
<td>0.390</td>
</tr>
<tr>
<td>Number of fruits per plant</td>
<td>-0.187</td>
<td>-0.134</td>
<td>-0.072</td>
<td>0.794</td>
<td>0.144</td>
<td>0.098</td>
<td>0.643</td>
</tr>
<tr>
<td>Fruit length</td>
<td>-0.036</td>
<td>-0.165</td>
<td>0.061</td>
<td>0.192</td>
<td>0.249</td>
<td>0.176</td>
<td>0.477</td>
</tr>
<tr>
<td>Fruit weight</td>
<td>-0.014</td>
<td>0.119</td>
<td>-0.022</td>
<td>-0.065</td>
<td>0.215</td>
<td>0.257</td>
<td>0.490</td>
</tr>
</tbody>
</table>

Blockletter figures denote direct effects  
Residual effect = 0.3680
ASSESSMENT OF RESISTANCE IN EGGPLANT AGAINST SCLEROTINIA WILT WITH A NEW SCREENING TECHNIQUE

K.S. KAPOOR+, S.R. SHARMA+, AND S. GANGOFADHYAY*

+ I.A.F. I., Regional Station, Katrain - 175129, Kullu Valley (H.P.)
*Krishi Anusandhan Bhavan, Pusa New Delhi-110012 – INDIA

Sclerotinia sclerotiorum (Lib.) de Bary is a cosmopolitan fungal pathogen and occurs world wide. It is known to encompass 19 species belonging to 10 genera in family Solanaceae (Purdy, 1979). Though the eggplant is said to be native of India, the pathogen has been found raising its ugly head in the seed producing areas of Northern India only recently (Kapoor, 1988). At present no control measures are available for the disease; this study aimed to find source(s) of resistance in eggplant to the disease by development of screening method.

Detached colonized petal technique developed earlier by Kapoor et al. (1985) to screen cauliflower germplasm was extended to screen eggplant seedlings with slight modifications against this disease. Five weeks old seedlings of different lines were grown in 10 cm diameter plastic of different lines were grown in 10 cm diameter plastic pots filled with steam sterilized soil for screening. The petals were colonized with S. sclerotiorum. These were cut with sharp razor in distilled water into small visible pieces each of which was placed in the center of leaf with the help of a drop of water. Inoculated plants were placed in a dew champer at 80-10 per cent relative humidity at room temperature (22-25 C). The inoculated petal segments, however, were removed from leaf surface after 24h in order to keep uniform inoculum load. The symptoms developed after third day with typical signs on sixth day. Fifty varieties and breeding lines were screened and seedlings were scored after six days of inoculation using 0-5 scale where 0 designates no spread beyond the site of inoculation and 5 designates spread of disease to the stem through petiole resulting in death and defoliation. The cultivars which showed a low disease score (less than 3) were considered as resistant.

LITERATURE CITED


ANNOUNCEMENTS

EUCARPIA MEETING

The VIIIth EUCARPIA Meeting on "Genetics and Breeding on Capsicum and eggplant" will be held in Casaccia, Rome (Italy) at the ENEA-CRE during the first fortnight of September 1992.

The organization of the Meeting is devolved to the Cattedra di Miglioramento genetico, University of Naples (via Università 100, 80055 Portici, Naples) and the Institute of Plant Breeding and Seed Production, University of Turin (via P. Giuria 15, 10126 Turin).

PROCEEDINGS

The Proceedings of the VIIth EUCARPIA Meeting on "Genetics and Breeding on Capsicum and Eggplant" held in Zaragoza, Spain in 1986 are still freely available.

If you are interested in receiving them you can apply to:

R. Gil Ortega
S.I.A. - D.G.A.
Apartado 727
50080 Zaragoza, Spain
A MISCALCULATION

We have been using for several years, different methods for Phytophthora capsici inoculations by zoospore suspensions. Recently, we have detected a miscalculation when evaluating the zoospore concentration in those suspensions. Accordingly, in all our publications dated before 1990, the zoospore concentrations reported as used by our research team should be divided by 16. That is to say, the concentration most commonly used by us, 300,000 zoospores/ml, is in fact 18,750 zoospores/ml. That error does not change the conclusions of our works. However, we would like to apologize for it.

We have chosen Capsicum Newsletter for this information because we have published there most of our concerned reports and because it is the most direct way of contacting those persons possibly interested in this information.

R. Gil Ortega, C. Palazo'n Espafiol and J. Cuartero Zueco
LITERATURE REVIEW

Capsicum


**Eggplant**


ANALYTICAL INDEX

Pepper
Androgenesis .................................................................................................................. 47
Breeding
Capsaicinoids content ............................................................................................ 36
Heritability ............................................................................................................. 29, 33
Internode length ..................................................................................................... 34
Yield ....................................................................................................................... 31
Capsicum baccatum ................................................................................................... 42, 60
Capsicum chacoense .......................................................................................... 38, 60
Capsicum chinense ................................................................................................. 60
Capsicum eximium ..................................................................................................... 60
Capsicum frutescens .............................................................................................. 36, 42, 60
Capsicum galapagoense ...................................................................................... 60
Capsicum praetermissum ....................................................................................... 42, 60
Capsicum pubescens .............................................................................................. 60
Disease and pest resistance
Bacteria
Xanthomonas campestris ................................................................. 54
Alternaria sp ........................................................................................................... 56
Cercospora sp ........................................................................................................ 58
Phytophthora capsici .......................................................................................... 47, 59
Verticillium dahliae .............................................................................................. 60
Fungi
Viruses
CMV ....................................................................................................................... 51, 52
TMV ....................................................................................................................... 47
ToMV ....................................................................................................................... 49
Genetics .................................................................................................................. 26, 28, 29, 31, 33
Germplasm evaluation ......................................................................................... 47
Germplasm exchange .......................................................................................... 49
Haploidy ................................................................................................................. 26, 28, 29, 31, 33
Interspecific cross .................................................................................................. 18, 20, 22
In vitro culture ........................................................................................................ 18
Isoenzymes ............................................................................................................ 13
Mutagenesis ............................................................................................................ 36, 38
Natural cross-pollination ...................................................................................... 25
Polyploidy .............................................................................................................. 43, 58
Regeneration ......................................................................................................... 40, 42
Resistance to soil .................................................................................................... 63
Seed-borne disease .............................................................................................. 62
Seed germination .................................................................................................... 63
Seed storage .......................................................................................................... 64
Transplant period ................................................................................................. 24
Yield ....................................................................................................................... 24
Eggplant
Breeding
  Coheritability
  .................................................................66
  Quantitative traits .........................................................68
Disease and pest resistance
  Fungi
    Sclerotinia sclerotiorum ........................................70
Seed storage .................................................................64
RESEARCHERS AND INSTITUTIONS INCLUDED IN THE MAKING LIST OF 'CAPSICUM NEWSLETTER'

ALGERIA
Dept. d'Agronomy G6n6rale, Inst. National Agronomique, EL HARRACH-ALGER

ARGENTINA
Catedra de Fitotecnia, Fac. Ciencias Agrarias, (4700) CATAMARCA
Estacion Experimental La Consulta, (I.N.T.A.), Casilla de Correo 8/5567, La Consulta MEN'DOZA

AUSTRALIA
Department of Primary Industries, G.P.O. Box 46, BRISBANE-Queensland 4001
Department of Primary Industries, Bundaberg Research Station, Mail Service 108, Ashfield Road, BUNDABAEG-Queensland 467U
Department of Primary Industries, Horticultural Research Station, P.O.Box 538, BUWEN-Queensland 4805
Department of Primary Industries, Plant Pathology Branch, Meiers Road, IN'U00ROOPILLY Queensland 4068
O.apartient of Primary Industries, Redlands Horticultural Research Stat., P.O.Box 327, CLEVELAND-Queensland 4163

AUSTRIA
Inst. fur Pharmakognosie, Universit6t Wien, W~hringerstrasse 25, 1U90 WIEN

BOLIVIA
Centro Fitogenetico Pairumani, A.A. 128, COCHABAMIBA

BRASIL
DELLA VECCHIA Paulo T., Rua Teodoro SaMDaio 2550-4' andar, 05406-SAO PAULO-SP
Dept. de Fitotecnia, Universidade Federal de Vigosa, 36.570 VICOSA M.G., Oapt. de Gen6tica, ESALQ, Caixa Postal 83, 13.400 PIRACICABA - SAO PAULO
EMBRAPA, lica-Cenargen, C.P. 1U.2372, 70.000 BRASILIA DF
EMBRAPA-CNPH, C.P. 07.0218, 70.359 BRASILIA OF
EMBRAPA-UPEA-Belen, C.P.13U, BELEN - PARA 66.000
Fundacao Inst. Agronomico di Paran-, Area de Documentagao, Rodovia Celso Garcia Cid - km 375, Caixa Postal 1331, 86100 LONDRINA-PARANA'
Inst. Agronomico de Campinas, Cx Postal 28, 13028 CAMPINAS SP
Univ.ee Sao Paulo, Escola Sup. de Agricultura 'Luiz de Queiroz', Inst. de Genetica
Setor de Citologia, Av. Padua Dias 11 - C.P.83, 1340U PIRACICABA - SAO PAULO

BULGARIA
Institute of Genetics and Plant Breeding, 1113 SOFIA
Institute of Introduction, and Plant Resources, SADOVO 4122
Institute of Plant Physiology, of Bulgarian Academy of Sciences, Academician Bouchevstr. 6, SOFIA
Institute of Plant Protection, KOSTINBROU 97113
The MARuSA, Vegetable Crops research Institute, 4003 PLOVDIV
V. KULAMM, Higher Institute of Agriculture, PLOVDIV

BURKINA FASO
IRAT, B.P. 910, BOBO DIOULASSO

CAMADA
Agriculture Canada, Research Station, P.U.Box 1000,,AGASSIZ-8.C.
PAOATA, 627 Aquarius Rd. RR 2, VICTORIA - BRITISH COLUMBIA
Stokes Seeds Limited, Research Center, 39 James St.-P.O.Box 10, ST. CATHARINES-Unt. L2R 6R6

CAPE VERDE
INTA, C.P. d4, PRAIA

CHILE
CASSESES Ernesto, La Pastora 181 Oep. 140, SANTIAGO 10
Universidad Austral de Chile, Inst. de Produccion Vegetal, Facultad de Ciencias Agrarias, Casilla 567, VALJIVIA

CHINA P.R.
Dept. of Horticultura, Northwestern Agric. University, WUGONG - Shannxi

COLOMBIA
I.C.A., A.A. 51764, MEDELLIN
1.C.A., Programa Hortalizas, A.A.233, PALMIRA
Universidad Nacional de Colombia, Apartado Aereo 237, PALMIRA

COSTA RICA
CATIE-MIP, 7170 TURRIALBA
Centro Agronomico.Tropical, de investigacion y Ensenahza, Apartado 74, TURRIALBA
Proyecto Regional Maneyo Integraao, Oe Plagas-Coordinaduria G sta Rica, Apdo.
843-2050 San Pedro, 111ONTES DE OCA-SAN JUSE'
Sede Universitaria Regional, del Atl--ntico, Universidad de G sta Rica, Apdo 119,
TURRIALBA
Unidad de Recursos Gen6ticos, CATIE, TURRIALBA 7170

CUBA
Centro de Informacion, y Documentacion Agropecuario, Gaveta Postal 4149, LA HABANA 4
Dept. de Proteccion de Plantas, INIFAT calle 1 esquina 2, (Santiago de Las Vegas),
CIUDAD DE LA HABANA
Horticultural Inst. Liliana Oimitrova, km 33--2 Carretera de Bejucal a Quivican, LA
SALUD-LA HABANA
Inst. de Investigaciones Fundamentales, en Agricultura Tropical, calle 1 esq. a 2
(Santiago de Las Vegas), CIUDAD HABANA

CZECHOSLOVACKIA
Dept. of Genetic Resources, Div. of Genetics and Plant Breeding, Inst. of Plant
Production, Ruzyn6 507, 161 06 PRAGUE 6
Inst. of Experimental Botany, Czechoslovak Academy of Science, Sokolovsk6 6, 772 00
OLONUC
Research and Breeding Inst., for Vegetable and Special Plants, 94701 HURBANUVU
Research Inst. of Vegetable Growing, and Breeding, 772 36 OLOMOUC
Slachtitelska Stanica, PSC 925 24, PRALOVA PRI SENCI
Vyskumnny a slaschtitelsky, ustav zeleniny-VRBANOVO, Slachtitelska stanica, 93041
KVETO5LAVOV

EAST GERMANY
Zentralinstitut fOr Genetik, und Kulturpflanzenforschung, Corrensstrasse 3, 4325
GATERSLEBEN

EGYPT
Faculty of Agriculture, P.O.dox 84, KAFR-EL-SHEIKH

EL SALVADOR
ETHIOPIA
3ako Agricultural Research Center, P.U.Box 33, 8AKO SHOA
Horticultural Development Project, P.O.Box 62320, ADDIS ABEBA
Plant Genetic Resources Center, P.J.8ox 30720, ADDIS ABEBA

FRANCE
Centre de Recercne Tc"zier, Jonaine de Haninet, Route de Beaumont, 26000 VVALENCE
CIRAD-IRAT, 34000, MONTPELLIER
Encole Nat. Sup. d'Horticulture, 4 rue Hardy, 78009 VERSAILLES
Ets Asgrow-France, B.P. n.5, Saint ilartin le Beau, 37270 MONTLOUIS-SUR--LOIRE
Ets Gautier, 6.P. n.2, 1363U EYRAGUES
Griffation Seeds, Oas d'Aptel, 30510 GENERAC
HENNART J.W., 26 bis Puech du Teil, 30000 NIMES
I.N.R.A., Station d'Amélioration, des Plantes Haraichères, B.P. 94, 84140 MONTFAVET
I.N.R.A., Station de Pathologie Vegetale, B.P. 94, 84140 MONTFAVET
I.N.R.A., G.E.V.E.S.-Domaine d'Olonne BP 1, Les Vignes, d4300 CAVAILLON
IART-CIRAO-Reunion, 97407 Saint-Denis Cedex, REU.-NION (Ile De La Reunion)
Institut de kecnerches Vilimorin, LA MEi4ITRE, 49250 BEAUFORT EN VALEE
Institut de kecnerches Vilimorin, Centre de la Costi&re, Ledenon, 30210 REMOULINS
Institut de kecnerches Vilorin, La Menitre, 49250 BEAUFORT EN VALEE
Laboratoire de Phytomorphologie, Exp6rimentale-Universit-6 de Provence, 3 Place V.
Hugo, 13331 HARSZILL~ CJEX 3
Laboratoire du Phytotron, C. ab N' R.S., 91190 -IF-SUR-YVETTE
Les Graines Caillard S.A., Domaine du Moulin, 64260 SARRIANS
MINISTERE de l'AGRICULTURE, Groupe d'Etudes des Varietes, et Semences-Domaine
D'Olonne, B.P. 1-Les Vigneres, CAVAILLON 64300
ORSTOM, 2051 Av. du Val de Aont Ferrand, B.P. 5045, 34032 MONTPELLIER
POCHARD E. -INRA, Station d'Am6l i oration, des Plantes O'llaraich6res, B.P. 94, 84140
MONTFAVIET
Royal Sluis France Society, Mas de Rouzel-Chemin des Canaux, B.P. 14311 30017 NIMES
Societe Clause, 91220 BRETIGNY-SUR-URGE
Societe Clause, r1as St. Pierre-La Galine, 13210 ST. REMY DE PROVENCE
Station d'Ant6lioration des Plantes, I.N.R.A.-C.N.R.A., Route de Saint Cyr, 78000
VIEKSAILLE-S
Tezier, Centre de Recercne, Domaine de l"Janinet, Route de Beaumont, 26000 VALENCE
SUR RHUNE

FRENCH WEST MOIES
INRA-CRIAAG, BP 1232, 97134 POINTE-A-PITRE-GUADELOUPE

GREAT BRITAIN
Dept. of Agricultural Botany, Plant Sciences Laboratories, University of Reading, READ114G RG6 2AS
Plant Biology Dept., Birmingham University, P.J.Box 363, BIRMINGHAM 815 2TT
Schering Acirocheificals Ltd., Chesterford Park Research Stat., SALLRON WALDEN-Essex
C310 -XL
Scottish Crop Research Inst., Invergowrie, DUNDEE 002 50A

GREECE
Greek Gene Oank-Cereals Inst., North Greece Agric. Res. Center, THESSALONIKI
Inst. of Veget-a0le Crops, HERAKLION-CRETE 711 10
LEPENIOTIS C., P.O.Box 10637, 54110 THESSALONICHI
GUATE-MALA

Planta de la Universidad de San Carlos de Guatemala, Facultad de Agronomía, Centro de Documentación y Información Agrícola

Honduras

Escuela Agrícola Panamericana, box 93, TEGUCICALPO

HUNGARY

Agricultural Research Inst. of the Hungarian Academy of Sciences, Marx tér 2, 2462 MARTONVASÁK

Andasfalvy A., Interprotein KFT, Goldmark K.u, 2, 1122 BUDAPEST

Enterprise for Extension and Research, in Fruit Growing and Ornamentals, Dept. Ornamental, H-1223 BUDAPEST, Park u. 2

Institute for Fruit, and Ornamental Growing, FERTOD H-9431

Institute of Vegetable Growing, University of Horticulture, Menesi ut. 44, 1118 BUDAPEST

Library, Seed Production and Trading Company, P.O.Box 41, 6601 SZENTES

Research Centre for Agrobotany, N.I.A.V.I.T., 2766 TAPIOSZLELE

Research Inst. of Vegetable Crops, budateteny Station, Park u. 2-P.O.B. 95, 1775 BUDAPEST

Research Institute, Seed Production and Trading Company, P.O.Box 41, 6601 SZENTES

Research Station, of Agricultural University, P.O.Box 3, 4014 PALLAG-DEBRECE

University of Agriculture, Dept. Plant Research, 83161 KESZTHELY

Vegetable Crops institute, Red Pepper Research Station, Obermayar ter 9, KALOCSA 6300

Vegetable Crops research Institute, P.O.Box 116, 6001 KECSKE-MENT

INDIA

Ankur Agric; Research Laboratories, 27 New Cotton Market Layout, NAGPUR 440 018

M.S. Ankur Seeds Port. Ltd, 27 New Cotton Market Layout, Opp Bus Stop, NAGPUR 440 018

Burdwan University, BURDWAN 713 104

Central Experimental Station, Wakawali, DAPOLI 415 712 (Dist. Ratnagiri - Maharashtra)

CHES HIN100 HOUSE, Shukla Colony, RANICHI - Biharstate

Dept. of biochemistry, Institute of Science, 15 fladame Cama Road, BOMBAY 32

Dept. of botany, Dharmpeth Science College, Near Ambazari Garden, NAGPUR 440 010

Dept. of Botany, Kakatiya University, WARANGAL 506 009 A.P.

Dept. of Botany, Nagarjuna University, NAGARIU14A NAGAR 522 510, Guntur Dist. (A.P.)

Dept. of Botany, University of Rajasthan, JAIPUR - 302 004

Dept. of Horticulture, Banaras Indu University, VARANASI 221 005

Dept. of Horticulture, College of Agriculture, Rajendranagar, HYDERABAD 500 030 A.P.

Dept. of Plant Pathology, Punjab Agricultural University, LUDHIANA Punjab 141 004

Dept. of Vegetable Crops, Landscaping and Floriculture, Punjab Agricultural University, LUDHIANA. - 141 004

Dept. of Vegetable Crops, Crops 034 Biochemistry, Punjab Agricultural University, LUDHIANA 141 004

Div. of Hycology, and Plant Pathology, I.A.R.I., NEW DELHI 110 012

Div. of Plant Physiology and biochem., Indian Inst. of Hortic. Sciences, Hessaraqatta Lake P.O., BANGALORE 560 089


I.A.R.I. Library, NEW DEHLI 110 012
I.A.R.I., Regional Station, KATRAIN - Kullu Valley - HP 175 129
I.A.R.T., Division of Genetics, NEW DEHLI 110 012
I.C.A.R., Krishi Bhavan, NEW DELHI 110 001
Indian Inst. of Hort. Research, 255 Upper Palace Orchards, Post Box 8025, BANGALORE 560 080
Kerala Agricultural University, College of Horticulture, P.O. Vellanikkara-680 654, TRICHUR - KERALA
Library, Tamil Nadu Agricultural University, COIMBATORE 641 003
Library, University of Horticulture, and Forestry, SOLAN (P.O.: NAUNI) - 173 230 H.P.
MUKADA SEEDS, Boman Baug, Kher Pada, GHOLVAD - Dist. Thane (W.RLY.)
NATH SEEDS Ltd., Adalat Road, AURANGABAD 431005
NEHRU Library, Haryana Agricultural University, HISSAR
Orissa University, of Agriculture- and Technology, Dept. of Horticulture, Bhubaneswar 751 003
Regional Agric. Research Station, Lam - GUNTUR 522 034
Regional Fruit Research Station, Cuddapah District A.P., ANANTHARAJPURAM 516 105
Sher-e-Kashmir University, of Agricultural Sc. and Tech., Shalimar, SRINAGAR 191 121
Tamil Nadu Agricultural Univ., Agricultural Research Station, South Arcot District, TAMILNADU - PALUR 607 113
Tamil Nadu Agricultural Univ., Faculty of Horticulture, COIMBATORE 641 003
Tamil Nadu Agricultural Univ., Horticultural Research Station, Vijayanagaram UOHAGAMANDALAM 643 001
V. Ramanathan, 7 Karia Kara Vilai, East of Clock Tower, NAGERCOIL 629001

INDONESIA
Balai Penelitian Hortikultura, Jln. Tangkuban Perahu 517, LEMBANG - BANDUNG 40391

ISRAEL
Agricultural Research Org., Gilat Regional Exp. Station, MOBILE POST NEGEV
Dept. of Medicinal, Spice ed Aromatic Plants, The Volcani Center P.O.Box 6, BET DAGAN 50250
Dept. of Plant Pathology, The Volcani Center, P.O.Box 6, BET DAGAN 50250
Dept. Plant Genetics and Breeding, The Volcani Center, P.O.B. 6, BET DAGAN 50250
Div. Virol., The Volcani Center, P.O.Box 6, BET DAGAN
Hazera Seed Company, Mivhor Farm, POST SDE GAT 79570
SHIFRIS SHIFRIS CHEN, The Volcani Center, P.O.Box 6, BET DAGAN

ITALY
Biblioteca, Istituto Agronomia Generale, Via Filippo Re 6-8, 40126 BOLOGNA 80
Cattedra di Miglioramento Genetico, Facolt6 di Agraria, 80055 PORTICI - NA
Consorzio SEMENCOOP, Via Calcinaro 1430, 47020 MARTORANO DI CESENA - FO
Dipartimento di Biologia, Sezione Genetica e Microbiologia, Via Celoria 26, 20133 MILANO - MI
Dipartimento di Genetica, e di Microbiologia, Universiti, Via S. Epifanio 14, 27100 PAVIA - PV
Ditta SEMENTI NUNHEM, Via Ghiaione 2, 40019 SANT'AGATA BOLOGNESE - BO
ENEA- Biblioteca, c/o CRE Casaccia, 00060 S. MARIA 01 GALERIA - RM
ENEA Casaccia, Dipartimento FARE, C.O. 2400-Via Anguillarese 301, 00100 ROMA - RM
Facoltà di Agraria, Via michelangelo 32, 10126 TORINO - TO
Istituto del Germoplasma, Via Amendola 165/A, 7U126 BARI - BA
Istituto di Aaronouia Generale, e Coltivazioni Erbacee, Facolté di Agraria, Via Filippo Re 6-8, 40126 BOLIGNA - BO
Istituto di Agronomia, P.le delle Cascine, 50144 FIRENZE - FI
Istituto di Agronomia, Via Amendola 165/A, 7U126 BARI - BA
Istituto di Agronomia, Via Celoria 2, 2U133 MILANO - MI
Istituto di Agronomia, Via E. Ue Nicola, 07100 SASSARI - 55
Istituto di Agronomia, Via Gradeno 6, 351UO PADOVA - PD
Istituto di Allevamento Vegetale, 3.go XX Giugno, 06100 PERUGIA - PG
Istituto di Botanica Agraria e Genetica, Facoltà di Agraria, Università Cattolica, 29100 PTZACZNA - PC
Istituto di Coltivazioni Arboree, Via Donizetti 6, 50144 FIRENZE - FI
Istituto di Genetica, Via Selmi 2, 40126 BOLOGNA - 10
Istituto di miglioramento Genetico, e Produzione delle Sementi, Via P.Giuria 1S, 10126 TOR14 - TO
Istituto di Miglioramento Genetico, Facoltà di Agraria, 80055 PORTICI - NA
Istituto di miglioramento Genetico, Facoltà di Agraria, Università Tuscia, 01100 VITERSO - VT
Istituto di Neofarmonologia Agr. Appl., Via Amendola 175/A, 70126 BARI BA
Istituto di Orticoltura e Floricoltura, V.le Scienze, 90122 PALERMO PA
Istituto di Orticoltura e Floricoltura, Via delle Piagge 23, 56100 PISA
Istituto di Orticoltura e Floricoltura, Via Valdisavoia 5, 95123 CATANIA CT
Istituto di Patologia Vegetale, Via Filippo Re 8, 40126 BOLIGNA - BO
Istituto di Patologia Vegetale, Via P. Giuria 15, 10126 TORINO - TO
Istituto di Patologia Vegetale, Facolta di Agraria, 80055 PORTICI - NAPOLI
Istituto di Patologia Vegetale, Facolta di Agraria, B.go XX Giugno, 06100 PERUGIA PG
Istituto di Ricerche, Orto-ioro-For Ticoltura, 22U70 MINOPRIO - CO
Istituto Sperimentale per l'orticoltura, Via Conforti 11, 84100 SALERNO - SA
Istituto Sperimentale per l'orticoltura, Sezione Operativa, 63030 MONSAMPOLU DEL TRONTO - AP
Istituto Sperimentale Valorizzazione, Tecnologia Prodotti Agricoli, Via G. Venezian 26, 20133 MILANO - MI
Laboratorio Fitovirologia Applicata, C.N.R., Via Viglians 104, 10135 TORINO - TO
Laboratorio Valorizzazione, Coltura Industriali, ENEA-CASACCIA, 00060 S. MARIA 01 GALERIA - ROMA
OLTER Seiienti, C.so Venezia 93, 14100 ASTI - AT
ORIS, Via Vittorio Veneto 81, 20090 SALERANO SUL LAMBRO MI
PETO ITALIANA s.r.l., Centro di Ricerca, Via Canneto di Rodi, 04010 BORG0 SABOTINO - LT
Plant Production and Protection, Division C 706, FAO/IBPGR, Via delle Terme di Caracella, OU100 ROMA – RM
S.A.I.S. S.p.A., Centro Ricerche, e miglioramento Genetico, Via Ravennate 214, 47023 CESENA - FO

IVORY COST
Faculty of Science, 04 B.P. 322, ABIDJAN 04

JAPAN
Agriculture Forestry and, Fisheries Research Council, Kosumigoseki - Chiyoda, TOKYO
DAI-ICHI SEEQ Co. Ltd., P.O.Box 16 Tamagawa, TOKIO0
Dept. of Breeding, Vegetable & Ornamental Crops, Research Station, H.A.F.F., KUSAVA - AGE - NIE 514-23
Dept. of Greenhouse Cultivation, V.O.C. 111%, TAKETOYO - CHISTA - AICHI
Faculty of Agriculture, Kagawa University, 1, iiki-machi - Kida-gun, KAGAWA - KEN 761-07
Faculty of Agriculture, Nagoya University, Chikusa, NAGOYA 464
Faculty of Gen. Ed., Tokyo University, of Agriculture and Technology, FUCHU TOKYO 183
Inst. of Agriculture and Forestry, University of Tsukuba, Tsukuba, IBARAKI KEN 305
Inst. for Biological Res., Yokohama City Univ., Kanagawa-ken 232, YUKUHAI-SSHI
Lab. of Vegetable and Ornamental Horticulture, Fac. of Agriculture, Oiwa-cho,
Kita-shirakawa, KYOTO 606
Laboratory of Horticulture, Kyoto University, Shimogano Sakyo-ku, KYOTO 606
Morioka branch, V.O.C.R.S., Shimokuriyagawa, MORIOKA 020-01
National Inst., of Agro-biological Resources, Tsukuba Science City, YATABE IBARAKI
National Research Inst. of Veget., Ornamental Plants and Tea, Lab. of Breeding
Solanaceous Vegetables, A140 AGE-GUN MIE 514-23
SAKATA SEED Company, P.O.Box Yokohama hinami n. 20, 1-7 Nagata Higashi 3-chome,
"linami-ku, YOKOHAMA 232
SAKATA SEED Corp., Plant Biotechnology Center, 358 Uchikoshi, SODEGAURA
Seed Storage Laboratory, Div. of Genetics, Dept. of Physiology and Genetics,
National Inst. of Agric. Sciences, TSUKUBA IBARAKI 305
Shizuoka Agricultural, Experimental Station, 678-1 Tomioka -Toyota Iwata, SHIZUOKA
The Nippon Shinyaku Institute, for botanical Research, Oyake Sakanotsuji-cho 39,
Yamashina-ku, KYOTO 607
YUKURA Yasuo, 46-7 3-Choine, Miyasaka Setagaya-Ku, TOKYO

KOREA
Breeding Institute, Choong Ang Seed Co., 14 Bangkyo Dongtan, HWASUNG KYOUNGGI
Dept. of Horticulture, College of Agriculture, Kyungpook National University, TAEGU 635
Dept. of Vegetable Breeding, Horticultural Experiment Station, Office of Rural Development, Imokdong 475, SUWEON 170
Horticultural Experiment Station, 20 Gandong-dong Buk-gu, PUSAN 57111
NONG-WOO SEEDS, Plant Breeding Research Institute, 387-2 Sasa-2Ri, Panwol
Whasong, rKYONrrRI 445-820

LEBANON
Plant Breeding Dept., Agricultural Research Inst., P.O.Box 923, TRIPOLI

LIBERIA
Central Agricultural Res. Inst., P.O.Box 32, GSARNGA-BONG COUNTY

LIBYA
National Bureau for Agricultural, Consultations and Studies, P.O.8ox 2761, TRIPOLI

MALAYSIA
Dept. of Agronomy and Horticulture, University of Agriculture Malaysia, SERDANG - 5 E L A NG2 0 R
Dept. of Genetics & Cellular Biology, University of Malaya, KUALA LUMPUR 22 - 11
MARDI Tanah Rata 39007, Cameron Highlands - PAHANG
MARDI1, P.U.box 123U1 - G.P.O. 50774, KUALA LUMPUR
MARDI, Research Station JALAN KEBUN, P.U.Box 186 - 41720 Klang, SELANGOR

MARTINIQUE

MEXICO
Centro de botánica, Colegio de Postgraduados, 56230 CHAPINGO-Estado de México
Centro de Investigaciones Agrícolas de el Bajio, INIA-SARH, Apartado Postal 112,
CELAYA-GTO 36000
Centro de Investigaciones Agrícolas del Norte, INIA-SARH, Apartado Postal 81, 33000 CD.
DELICIAS - CHIH.
Empacadora GAB, Guanajuato 117, Celaya-GTO. 38040
IBPGR, Oficina para Latinoamerica, c/o CIMMYT, Apartado Postal 6-641, MEXICO 06600 O.F.
Instituto Nacional, de Investigaciones Agrícolas, Apartado Postal C-1, Suc.
Aeropuerto, TAMPICO
Instituto Nacional, de Investigaciones Forestales y Agropecuarias, Obispado de Las Casas n.109 Altos, Apartado R stat 41, 93400 PAPANTLA - VERACRUZ
Liorary q.l.'F.A.P., Campo Experimental del Sur de Tamaulipas, Apartado Postal Km 55 Carretera Tampico Mante, TAMPICO

NEW ZEALAND
J. WATTIE CANNERIES Ltd, King Street-P.O.Box 439, HASTINGS
The Librarian (serials), Massey University, PALMERSTON NORTH

NICARAGUA
Instituto Superior Ciencias Agropecuarias, REGEN, Km 12.5 Carretera Norte, MANAGUA

NIGERIA
Dept. of Botany, Nigeria University, NSUKKA
Dept. of Crop Science, University of Nigeria, NSUKKA
Dept. of Plant Science, Inst. for Agricultural Research, Ahmadu Bello University,
P.M.B. 1044, ZARIA
National Horticultural Research Inst., Idi-Ishin PMB 5432, IBADAN

NORTH YEMEN
Hits Yemen (Cal Poly), P.O.Box 379, SANA'A Y.A.R.

NORWAY
Dept. of Vegetable Crops, the Agricultural University of Norway, Box 22, 1432 AAS-NLH

PAKISTAN
Vegetable Research Institute, FAISALABAD

PERU
Dept. de Ciencias Agropecuarias, Universidad Nacional de San Agustin, Casilla 23, AREQUIPA
Dept. de Fitopatología, Universidad Nacional Agraria, Apartado 456, LA MOLINA-LIMA
Dept. de Horticultura, Universidad Nacional Agraria, Apartado 456, LA MOLINA-LIMA
HOLLE Miguel, Choquehuanca 851, SAN ISIDRO-LIMA 27

PHILIPPINES
Dept. of Agriculture, College of Agriculture, Un. of the Philippines at Los Banos,
College - LAGUNA 3720
Inst. of Plant breeding, University of the Philippines, at Los Banos, LAGUNA 3720

POLAND
Academy of Agriculture, Inst. of Genetics and Plant Breeding, Wojska Polsiego 71, 60-625 POZNAN

ANDRZEJEWSKI R.P., Ul. Mottego 11/8, 60-723 POZNAN

Dept. of Genetics, A. Mickiewicz University, Dabrowskiego Street 165, 60-594 POZNAN

Dept. of Genetics, and Plant Breeding, University of Agriculture, Zgorzelecka Street 16, 60-198 POZNAN

Inst. of Plant Genetics, Polish Academy of Sciences, Ul. Strzeszynska 34, 60-479 POZNAN

PORTUGAL

I.N.I.A., Estagao Agronomica Nacional, Quinta do Marques, OEIRAS

PUERTO RICO

Univ. de Puerto Rico Rec. de Mayaguez, Colegio de Ciencias Agricolas, ESTACION EXP. AGR. Subest. de Isabela, Apartado 506, ISABELA OU662

ROMANIA

Research Inst. for Vegetable, and Flower Growth, VIDRA Jud. GIURGIU

SOUTH AFRICA

Oivision of Plant and Seed Control, Pvt. Sag X 179, PRETORIA 0001

SPAIN

ASGROW SEED Company, Apartado 175, U4700 EL EJIDO (ALMERIA)

C.R.I.A., La Alberca, MURCIA

Clause Iberica S.A., Apartado 162, PATERNA (Valencia)

Department Protection Vegetal, I.N.I.A.-CRIDA 03, Apartado 202, ZARAGOZA 16

Escuela de Capacitación Agraria, Apartado 71, DON BENITO (Badajoz)

I.N.I.A., Estación Experimental La Mayora, ALGARROBO-COSTA MALAGA

ORTEGA GIL R., D.G.A.-S.I.A., Apartado 727, 50080 ZARAGOZA

SANCHEZ FLORES Manuel, Apartado Correos 832, ALMERIA

Semillas Fit6, Avda Marques de Argentera 19, 08003 BARCELONA

Semillas Fit6, Crtra N-2, BELLPUIG (L6rida)

SENILLAS RAMIRO ARNEDO, C/Avda del Pilar 3-8 8, CALAHORRA-LOGRONO

Servicio de Investigación Agraria, Apartado 727, 50080 ZARAGOZA

Sluis & Groot Semillas, Apdo de Correos 57, EL EJIDO-ALMERIA

Universidad Politecnica de Valencia, Departamento de Genetica, Camino de Vera 14, VALENCIA 22

SRI LANKA

Agricultural Research Station, MAHA ILLUPPALLAMA

Food Technology Section, Ceylon Inst. of Scientific, and Industrial Research, P.O.8ox 787, COLOMBO

SUDAN

Agricultural Research Corporation, Box 126, WAD MEDANI

SUISSE

Nestec S.A., Av. Nest16 55, CH-180U VEVEY

TAIWAN - ROC

Asian Vegetable Research, and Development Center, P.O.Box 42, SHANHUA - TAINAN 74199

DA159 350 Lin-Sed Road Sec. 1. TAINAN

Dept. of Horticulture, Nat. Chung Hsing Univ., 250 Kuokuang Road, TAICHUNG 40227

Dept. of Horticulture, Nat. Taiwan University, TAIPEI

rengshan Tropical Hort. Exp. Stat., Fengshan - KAOHSIUNG
Library, Taiwan Agric. Research Inst., 189 Chung-cheng Road, WAN-FENG WU-FENG
TAICHUNG
Library, The Asian Vegetable Research, and Development Center, P.O.Box 42, SHANHUA
TAINAN 74199
National Chiayi Inst. of Agriculture, CHIAYI
Taiwan Seed Improvement, and Propagation Station, Shinshieh, TAICHUNG

THAILAND
APTA, Phaya Thai Court, Soi Golit - Phaya Thai Road, BANGKOK 10400
AVRDC, Thailand Outreach Program, Kasetsart University, R.O.Box 91010, (Kasetsart)
BANGKOK 10903
CHIA TAI Company Limited, 299-301 Songsawad Road, BANGKOK 10100
Div. of Horticulture, Oept. of Agriculture, Bagkhen - BANGKOK
Faculty of Agriculture, Chiang Mai University, CHIAN MAI

THE NETHERLANDS
Bruinsma Hybrid Seed Co., P.O.Box 24, NAALDWIJK AA 2670
Chronica Horticulturae, CH-ISHS, De Dreijen 6, 6703 BC WAGENINGEN
De Ruiter Zonen b.v., Naaldwijkseweg 400, 2691 RA ‘S GRAVENZANDE
Enza Zaden, P.O.Box 7, 1600 AA ENKHIUIZEN
EUCARPIA, P.O.8ox 128, 6700 AC WAGENINGEN
Glasshouse Crops Research, and Experiment Station, P.O.Box 8, 2670 AA NAALDWIJK
Institute of Horticultural, Plant Breeding, Mansholtlaan 15-P.O.Box 16, 6700 AA
WAGEN114GEN
Leen de Mos 8V, P.O.Box 54, 2690 AB ‘S GRAVENZANOE
Nickerson Zwaan b.v., Gebroken Neeldijk 74-P.O.Box 19, 2990 AA BANRENDRECHT
Nunheias Zaden BV, P.O.Box 4005, 6080 AA HAelen
Rijk Zwaan B.V., P.O.Box 40, 2678 ZG DE LIER
Royal Sluis, P.O.Box 22, 1600 AA ENKHIUIZEN
Scientia Horticulturae, P.O.Box 330, AMSTERDAM
Sluis en Groot B.V., P.O.Box 13, 1600 AA ENKHIUIZEN
Sluis en Groot Research, Blaker 7, 2678 LW DE LIER
Van der BEEK J.G., c/o Min. of Foreign Affairs, P.O.Box 20061, 2500 EB DEN HAAG

TUNISIE
Ecole Superieure d'Horticulture, CHOTT-MARIE-M-SOUSSE
Inst. National Agronomique de Tunisie, Avenue de l'Independance, 2049 ARIANA
Inst. National Agronomique de Tunisie, Lab. Cultures Maraichères et Florales, 43
Avenue Charles Nicolle, 1002-TUNIS BELVEDERE
Station d'Appui de la Medjerda, 2010 MANOUBA

TURKEY
Aegean Regional Agricultural, Research Inst., P.O.Box 9, MENEMEN-IZMIR
Ankara University, Faculty of Agriculture, Department of Horticulture, ANKARA-L-Askapi
Atatdrk Horticultural Research, Yalova Inst., ISTAIBUL
Department of Horticulture, Fac. Agriculture-Univ. Of Cukurova, C.U. Ziraat
FakHtesi, Bahq 8itkileri Bbildaid, ADANA
Ege Universitesi, Ziraat FakHtesi, Bitki Koruma B616md, BORNOVA 35100-IZMIR
Uludag Univ., Faculty of Agirc., Dept. of Horticulture, BURSA

U.S.A.
ASGROW SEED Company, P.O.Box 667, ARVIN-California 93203
ASGROW SEED Company, Pacific Coast Breeding Station, P.O.Box L, SAN JUAN BAUTISTA
California 95045
Chili-Queen, 6336 Oracle Rd. Suite 326.319, TUCSON - ARIZONA 857U4
U.S.S.R.
Bolshoy Haritoniewsky, Perenlok Dom 21, MOSKVA B-78
Department of International Book Exchange, Central Scientific Agricultural Library,
Orlikow Street 3, 107804 GSP-HOSCOW, B-139
Inst. of Ecological Genetics, of the Academy of Sciences, Lesnaya 20,
KISH114EV-277018
Moldavian Ins-. for Research, in irrigated Agriculture & , Vegetable Growing, Mira str. 50, 278000
TIRASPOL-MOLDAVIA
N.I.Vavilon All-Union, Inst. of Plant Industry, Herzen Street 44, 190 000 LENINGRAD
Opytnaya stantsiya, V.I.R., MAIKOP
Research.Inst. on Vegetable Crop, Breeding and Seed Production, Moscow region,
143030 ODINTSOV district

WEST GERMANY
AGRI-Saaten GmbH, P.O.Box 28 03 65, 2000 HAMBURG 28
Inst. fUr Obst und Gemjsebau (37U), Universit6t Hohenheim, Peregrasweg, 17100 STUTTGART 70
Plant Physiology Inst., Technical University of Munich, 8050 FREISING-WEIHENSTEPHAN

YUGOSLAVIA
Inst. za Povtarstvo Palanka, Karadjordjeva 71, 11420 SMEDEREVSKA PALANKA